GEOTECHNICAL ASSESSMENT TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT WAIMAKARIRI, RANGIORA **Engineers and Geologists** # GEOTECHNICAL ASSESSMENT TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT WAIMAKARIRI, RANGIORA | Report prepared for: | Summerset Villages (Rangiora) Limited | |----------------------|---------------------------------------| |----------------------|---------------------------------------| Report prepared by: Jen Kelly, Senior Engineering Geologist **Report reviewed by:** Titus Smith, Principal - Geotechnical Engineer, CPEng 9/7 Report approved for issue by: Scott Vaughan, Managing Director, CPEng Report reference: 170743-C Date: 15 October 2019 Copies to: Summerset Villages (Rangiora) Limited 1 electronic copy Riley Consultants Ltd 1 copy | Issue: | Details: | Date: | |--------|---------------------------------------|-------------------| | 1.0 | Geotechnical Due Diligence Assessment | 1 February 2019 | | 2.0 | Geotechnical Assessment | 7 August 2019 | | 3.0 | Geotechnical Assessment – Plan Change | 20 September 2019 | | 4.0 | Geotechnical Assessment – Plan Change | 15 October 2019 | # **Contents** | 1.0 | Introduction | . 1 | |------|---|-----| | 1.1 | Summary | . 1 | | 2.0 | Site Description | . 1 | | 2.1 | Application Site | . 1 | | 2.2 | Background | . 2 | | 3.0 | Proposal | | | 4.0 | Scope of Works | . 3 | | 5.0 | Geology and Groundwater | . 4 | | 6.0 | Site Investigation | | | 6.1 | Shallow Subsurface Investigations | . 5 | | 6.2 | Deep Subsurface Investigations | . 5 | | 7.0 | Laboratory Test Results | | | 7.1 | Particle Size Distribution or Fines Content | . 6 | | 7.2 | Plasticity Index | . 7 | | 7.3 | Compaction | | | 8.0 | Geotechnical Assessment | | | 8.1 | Soil Description | | | 8.2 | Design Parameters | | | 8.3 | Seismic Design Parameters | | | 8.4 | Measured Groundwater Levels | | | 9.0 | Geotechnical Considerations and Hazards | | | 9.1 | Bearing Capacity | | | 9.2 | Liquefaction | | | 9.3 | Static Settlement | | | 9.4 | Earthworks | | | 10.0 | Foundation Considerations | | | 10.1 | | | | 10.2 | 3 | | | 11.0 | Additional Development Considerations | | | 11.1 | | | | 11.2 | | _ | | 11.3 | | | | | Conclusions | | | 13.0 | Limitation | 17 | # **Appendices** Appendix A: Hand Auger Borehole, Scala Penetrometer and Machine Borehole Logs Appendix B: Machine Borehole Photographs Appendix C: Laboratory Test Results Appendix D: Liquefaction Analysis Appendix E: RILEY Dwg: 170743-1 Appendix F: Outline Development Plan # **GEOTECHNICAL ASSESSMENT** TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT WAIMAKARIRI, RANGIORA #### 1.0 Introduction Riley Consultants Ltd (RILEY) has been engaged by Summerset Villages (Rangiora) Limited to undertake preliminary geotechnical site testing, analysis, and reporting for development of a 13.83ha greenfield site, located in south-west Rangiora at 104 Townsend Road and 141 South Belt. It is understood that this report is to be submitted in support of a private plan change to amend parts of the Waimakariri District Plan (WDP) pursuant to Section 73(2) and Clauses 21(1) and 22 of the First Schedule to the Resource Management Act 1991 (RMA). The following report represents an update/reissue of RILEY Ref: 170743-C, Rev 2 prepared for Summerset Villages (Rangiora) Limited to support a boundary adjustment. No further investigations have been undertaken and geotechnical conclusions and recommendations remain unchanged from that report. This report provides comment on geotechnical ground conditions, the potential for liquefaction to occur due to a large seismic event, and foundation options and approaches that could enable the future residential to meet the objectives of the RMA and the Building Code from a geotechnical perspective. This report excludes consideration of flood hazard, which is addressed separately. This report should be read in conjunction with RILEY reports covering the environmental preliminary/detailed site investigation (refer RILEY Ref: 170743-B) and civil infrastructure servicing (refer RILEY Ref: 170743-A). #### 1.1 Summary The geology and geotechnical condition of the site has been assessed and it is considered that there are no significant geotechnical barriers to prevent the site from being developed for residential purposes. #### 2.0 Site Description #### 2.1 Application Site The location of the site is shown in Figure 1 below. Figure 1: Plan Change Site Location The site is located in the south-western area of Rangiora township, with the northern site boundary adjoining South Belt, and Townsend Road adjoining the western boundary. East of the site is Southbrook Park, and the southern boundary adjoins Southbrook Stream (which flows west to east). The site slopes down very gently from the northwest to southeast. Site contours show an approximate ground surface elevation of RL 26.0m at the north-western boundary and a minimum elevation of approximately RL 22.0m at the south-eastern boundary (Lyttelton Vertical Datum (LVD)). The majority of the site area is currently grassed, with a horse training track present at the northern end, adjacent to South Belt. There are two dwellings and numerous farm buildings located in the north-western corner of the site. Medium density residential property is located to the north of the site, and a substantial new residential subdivision known as Townsend Fields is currently under construction to the north-west of the site. Southbrook Park is located to the east of the site, with the remainder of the site is bounded by rural land. Vehicle access to the site is via two access points; one on the western boundary from Townsend Road and one from South Belt. # 2.2 Background The application site was previously part of a 23ha title that extended from South Belt, across Southbrook stream and south towards Ellis Road. An application to subdivide the property has been lodged with Waimakariri District Council (WDC) at the Southbrook stream, creating the application site north of the stream which is 13.83ha in area. # 3.0 Proposal This private plan change request proposes to amend the WDP to change the zoning of the site from the Residential 4B to Residential 2 zone and modify the existing planning maps covering the site with a new Outline Development Plan (ODP). In its current status (Residential 4B), the site can be developed into approximately 13 sections comprising lifestyle blocks with dwellings. The proposed new provisions for the Residential 2 zone will allow for up to 150 sections (and dwellings). It is also proposed to incorporate within the zone some specific rules to provide for the construction of a retirement village. This would result in allowing a retirement village to be constructed on all or part of the site, or all or part of the site to be developed for typical residential dwellings (in accordance with the Residential 2 zone rules). The ODP attached in Appendix F, shows key elements to be incorporated into future residential activity on the site. These include: - the required location of future roading links to the existing transport network, - the provision of an esplanade reserve adjacent to Southbrook Stream, - the location and extent of a stormwater management area and - the allowance for a specified area for a taller main retirement village building. The intention of the ODP is to provide certainty regarding key requirements for any future residential activity on the site, whilst allowing flexibility as the detailed design phases evolve in the future. # 4.0 Scope of Works The scope of our proposed geotechnical investigation was based in part on recommendations from the Ministry of Business, Innovation and Employment (MBIE) Guidelines for Repairing and Rebuilding Houses affected by the Canterbury Earthquakes. The following works have been undertaken: - Desktop study of available geotechnical information, including the review of published geological maps, New Zealand Geotechnical Database (NZGD), Geological and Nuclear Sciences (GNS) active fault database, and RILEY experience and knowledge of geotechnical characteristics of the area. - Site walkover, service clearance and mark out of subsurface test locations. - Geomorphological mapping of the site. - Shallow subsurface geotechnical investigations including a total of 23 hand auger boreholes (HA), undertaken to a target depth of 3m below ground level (bgl), or refusal, with associated strength testing (shear vane and Scala penetrometer). - Deep subsurface geotechnical investigations including two machine drilled boreholes (BH), undertaken to a target depth of 15m, and an additional four boreholes, undertaken to a target depth of 6m bgl. Refer to RILEY Dwg: 170743-1 in Appendix D for test locations, and Appendix A for test logs. - Installation of a standpipe piezometer within five (of the six) machine boreholes. - Geotechnical laboratory testing including determination of Atterberg limits (ASTM D 4318 test method), fines content (Test 2.8, NZS 4402:1986) and standard compaction test (ASTM D 698). - Analysis of data and assessment of geotechnical hazards including seismicity, liquefaction and lateral spread potential, flooding and erosion. - Provision of preliminary foundation options for possible single-storey residential-type dwellings and two-storey buildings. Provision for preliminary foundation options for larger buildings, such as a retirement village building. # 5.0 Geology and Groundwater The published geological map of the area as described in the Department of Scientific and Industrial Research map for Kaiapoi (Geological Map of New Zealand, S76, 1:63,360 Geological Maps, 1976), indicates the site has surface geology consisting of alluvial silts overlying older post-glacial fluviatile gravel, sand and silt deposits belonging to the Yaldhurst Member of the Springston Formation. This is consistent with the geological map of the
area as described in the GNS geological QMAP for the area (Geology of the Christchurch Urban Area, 1:250,000 Geological Maps, 2008), which indicates the site has surface geology consisting of dominantly alluvial river deposits (brownish-grey river alluvium) belonging to the Yaldhurst Member of the Springston Formation. A review of the NZGD indicates that no publicly available geotechnical testing is available within 150m of the site. One machine borehole has been undertaken approximately 400m north-west of the site and indicates subsurface ground conditions comprising stiff silt to 1m depth, underlain by medium dense sand and gravel mixtures to 2.5m depth, in turn underlain by medium dense to dense gravel to a target termination depth of 10.45m bgl. Groundwater was encountered at 1.7m bgl. A review of the contours of depth to groundwater (in metres below ground) presented by Canterbury Maps, indicates the unconfined groundwater table is expected to be encountered between 1.0m and 2.5m depth across the site. A review of Environment Canterbury (ECan) well data indicates there is a well located east of the site (MH35/9661). The borelog records ground conditions comprising topsoil, silt and clay bound gravel to 4.7m depth, underlain by interbedded clay/silt bound gravel and water bearing gravels to at least 50m depth. Additional ECan wells in the area were assessed to gain insight into seasonal variations of the water table at the site. The most applicable wells, M35/0338 and M35/9001, are located approximately 140m to the south and 570m to the north-east of the site respectively. M35/0338 had been monitored between 20 September 1977 and 30 September 1987. The maximum recorded variation in groundwater level was 430mm. M35/9000 gives more recent data and has been monitored between 1 April 2001 and 29 November 2018. The maximum recorded variation was 1260mm. Based on the reviewed data, seasonal low groundwater levels are expected around December and January. However, the 29 November 2018 reading, which was around two weeks prior to the date of the subsurface investigation, indicates that the relatively wet spring has resulted in the water table being at around the median level at the time of the investigation. # 6.0 Site Investigation Subsurface investigations were undertaken by RILEY and McMillan Drilling Ltd (overviewed by RILEY) between 17 December and 21 December 2018, comprising a site walkover, buried services clearance check and completion of 34 subsurface tests. Five hand dug test pits were carried out at the site to retrieve samples for geotechnical laboratory testing on 8 January 2019. All soil samples were logged on-site by an engineering geologist in general accordance with the New Zealand Geotechnical Society (NZGS) Guidelines. The co-ordinates for all test locations were marked using a hand-held GPS. The test logs and site plan detailing the test locations have been included in Appendix A and Appendix E respectively (refer RILEY Dwg: 170743-1). # 6.1 Shallow Subsurface Investigations A total of 23 hand auger boreholes (HA1 to HA23) were drilled to a target depth of 3m bgl, or refusal, using a 50mm diameter auger head. In-situ soil strength testing was undertaken by shear vane and Scala penetrometer as each borehole was progressed. Once logging had been carried out, the material was photographed and reinstated in the general order in which it was removed. Five hand dug test pits (HP1 to HP5) were carried out at the site to retrieve samples for geotechnical laboratory testing. Table 1 summarises the samples collected for laboratory testing. Table 1: Samples Retrieved for Laboratory Testing | ID | Location Depth of Sample BgI (m) | | Samples | |-----|----------------------------------|--------------|------------------| | HP1 | North-west of site | 0.3m to 0.5m | SILT some gravel | | HP2 | South of site adjacent to HA14 | 0.3m to 0.5m | Clayey SILT | | HP3 | Adjacent to BH2 | 0.3m to 0.5m | Clayey SILT | | HP4 | Adjacent to BH4 | 0.3m to 0.5m | Clayey SILT | | HP5 | Adjacent to BH5 | 0.3m to 0.5m | Clayey SILT | ## 6.2 Deep Subsurface Investigations Six machine boreholes were undertaken at the site between 17 and 20 December 2018. Two machine boreholes (BH1 and BH2) were drilled to a target depth of 15m bgl and the remaining four machine boreholes (BH3 to BH6) were drilled to a target depth of 6m bgl, using a Geoprobe 8140LS rotary sonic drill rig – track mounted. HQ sized recovered core samples were logged, photographed and boxed by RILEY geologists. In-situ soil strength tests by standard penetration test (SPT (split spoon and/or solid cone)) were undertaken within all six BHs at approximately 1.5m intervals. On completion of BH1 and BH3 to BH6, a standpipe piezometer was installed. The piezometers comprised 50mm PVC pipe, screened with a filter sand surround from approximately 12m to 15m bgl in BH1 and 4m to 6m bgl in BH3 to BH6. A bentonite seal extended from approximately 11m bgl to near ground surface in BH1 and approximately 3m in BH3 to BH6. Locked flush-mount toby boxes were then installed and held in place with quick mix concrete. No piezometer was installed within BH2. This hole was backfilled with bentonite from 15.2m depth to the ground surface. # 7.0 Laboratory Test Results Testing has been undertaken on the five samples taken from the hand dug pits to obtain particle size distribution and the plasticity data. Compaction tests were also carried out to identify appropriate earthworks practices and preliminary requirements for filling. Test results are provided in Appendix C. A summary of the laboratory tests carried out on the samples is given Table 2. Table 2: Summary of Laboratory Tests Carried out on Samples | Test | HP1 | HP2 | HP3 | HP4 | HP5 | |------------------|-----|-----|-----|-----|-----| | PSD | х | х | х | | | | Hydrometer | | | Х | | | | Atterberg Limits | | | х | х | Х | | Compaction | х | | х | | х | ## 7.1 Particle Size Distribution or Fines Content As detailed in Table 2 three samples underwent particle size distribution (PSD) testing (one with hydrometer). Results are summarised in Table 3 and Figure 2 below, and are attached in Appendix C. Table 3: Summary of Wet-sieve PSD Test Results | Sample | | ole | Particle Size Distribution | | | | | |--------|---------------|-----|----------------------------|-----------|------------|--------|---| | Pit ID | Depth Bgl (m) | | Approximate | (PSD) F | Proportion | ns (%) | Material Description Based on PSD Results | | | From | То | Mass (kg) | Silt/Clay | Sand | Gravel | | | HP1 | 0.3 | 0.5 | 10 | 84 | 5 | 11 | Silt with minor gravel and minor sand | | HP2 | 0.3 | 0.5 | 10 | 90 | 4 | 6 | Silt with minor gravel and trace sand | | HP3 | 0.3 | 0.5 | 10 | 96 | 2 | 2 | Silt with trace gravel and trace sand | Figure 2: Plot of PSD and Hydrometer Test Results As shown by the results, the fines content (FC) of the soil is between 84% to 96% between 0.3m to 0.5m bgl. # 7.2 Plasticity Index The sampled soil has a plasticity index (PI) of 16 to 20 (ML, low plasticity silt), based on the results of the Atterberg test, as detailed in Figure 3 below. With reference to the MBIE/NZGS Module 3 Geotechnical Engineering Code of Practice, soils with a PI of greater than 12 are considered not susceptible to liquefaction. 60 U Line A Line 50 CH 40 MH 30 CL 20 + HP3 0.3m to 0.5m 10 ML + HP4 0.3m to 0.5m + HP5 0.3m to 0.5m 0 30 0 10 20 40 50 60 70 80 90 100 Liquid Limit (LL or wL) Figure 3: Plot of Material at 0.3m to 0.5m Deep on Plasticity Chart # 7.3 Compaction Standard Compaction testing was carried out on three samples. The results are summarised in Table 4. **Table 4: Summary of Compaction Test Results** | Pit ID | Water Content as Received (%) | Maximum Dry Density (t/m³) | Optimum Water Content (%) | |--------|-------------------------------|----------------------------|---------------------------| | HP1 | 29.6 | 1.47 | 25.0 | | HP3 | 30.1 | 1.50 | 27.0 | | HP5 | 24.1 | 1.58 | 24.5 | # 8.0 Geotechnical Assessment # 8.1 Soil Description Subsurface investigations confirmed the presence of a surficial layer of topsoil, underlain by Quaternary aged alluvial river deposits belonging to the Yaldhurst Member of the Springston Formation across the site, as described in detail below: Topsoil was encountered within all test locations from the ground surface to a maximum depth ranging between 0.1m and 0.35m bgl. The topsoil typically comprises brown silt with trace clay and rootlets. #### Alluvium - Silt/clay mixtures were encountered below topsoil within all test locations across the site, comprising silt and clay mixtures with trace sand to a maximum depth ranging between 0.45m and 1.7m depth. Strength of the soil ranged from loose to medium dense across the site with Scala penetrometer tests indicating blows of one to seven per 100mm penetration, but most typically in the range two to three blows per 100mm. Soil is logged as having low plasticity, though plasticity testing indicates that the material is sufficiently plastic to be considered non-liquefiable. - Silty/sandy gravel was encountered below the abovementioned silt and clay mixtures, from between 0.45m and 1.7m bgl to a depth of at least 15.2m bgl, the maximum depth of investigation. Strength of the silty/sandy gravel is reasonably consistent, having been described as dense to very dense (based on SPT test results). SPT test results at 1.5m depth, near the start of the gravel zone in BH3, BH5 and BH6, indicated the soils are slightly less dense than the gravel at depth. This medium-dense gravel zone was not recorded at or below 3m depth. Fill was encountered within HA22 (below topsoil) from between 0.2m and 0.4m depth. The fill comprised dark brown (mottled) organic silt with trace gravel and rootlets. Strength of the fill was described as firm (based on Scala penetrometer test results). We consider it likely the fill forms part of a service trench for a
known sewer main which runs through the site in a north-west to south-east direction. ## 8.2 Design Parameters Shear vane tests undertaken within the silt and clay mixtures overlying the gravels (at between approximately 0.6m bgl and 1.0m bgl), indicate vane shear strengths ranging between 112kPa and 230+ kPa, with the exception of HA23, which indicated a shear strength of 46kPa at 0.65m bgl. Hand auger and Scala penetrometer results have been used to assess the density of the surficial silt/clay mixture while SPT results from machine boreholes have been used to assess the density of the underlying silty/sandy gravel. While the overlying silt/clay mixtures varied from loose to medium dense across the site, it is recommended that a loose soil with a Scala penetrometer blow count of two is assumed for preliminary assessments of dwelling foundation options and road subgrade requirements. Based on the testing, preliminary soil parameters have been developed using empirical relationships: - A bulk unit weight of 18kN/m³ and a friction angle of 32° is recommended for the silt/clay mixture. - A unit weight of 21kN/m³ and a friction angle of 35° is recommended for the medium dense silty/sandy gravel. - A unit weight of 22kN/m³ and a friction angle of 38° is recommended for the underlying dense silty/sandy gravel. Preliminary soil parameters are summarised in Table 5 and Table 6. Table 5: Soil Parameters from Test Data | Material | | Unified
Material
Type | Scala Value
(blows/100mm) | SPT
N ₆₀ | Density | Vane Shear
Strength
(kPa) | |----------|--------------------|-----------------------------|------------------------------|------------------------|-----------------|---------------------------------| | | Silt/clay mixture | ML | 2 | - | Loose | 110 | | Alluvium | Silty/sandy gravel | GM | - | 20 | Medium
Dense | - | | | Silty/sandy gravel | GM | - | 50+ | Very Dense | - | Table 6: Assumed Values for Design | Material | | Density
γ (kN/m³) | Cohesion
c' (kPa) | Friction Angle
Φ' (deg) | |----------|----------------------|----------------------|----------------------|----------------------------| | Topsoil | Silt with trace clay | - | - | - | | | Silt/clay mixture | 18 | 0 | 32 | | Alluvium | Silty/sandy gravel | 21 | 0 | 35 | | | Silty/sandy gravel | 22 | 0 | 38 | # 8.3 Seismic Design Parameters Based on the geotechnical information for the site, and in accordance with NZS:1170.5, the site can be classified as having Class D soils, soft or deep soils. For Class D sites in the Canterbury Earthquake Region (defined as the jurisdictions of the Christchurch City Council, the Selwyn District Council, and the WDC) values of a_{max} and magnitude to be used for liquefaction triggering analyses have been prescribed by the MBIE Guidelines based on studies taking into account the short and medium term increase in seismic hazard for the Canterbury Region due to the elevated seismicity caused by the Canterbury Earthquake Sequence. These are reproduced in Table 7. Table 7: MBIE Recommended Peak Ground Acceleration Values for Geotechnical Design | Importance Level (1) 2 | SLS ₁ ⁽²⁾ | SLS ₂ ⁽²⁾ | ULS ⁽³⁾ | |------------------------------------|---------------------------------|---------------------------------|--------------------| | Annual Probability of Exceedance | 1/25 | 1/25 | 1/500 | | Moment Magnitude (M _w) | 7.5 | 6.0 | 7.5 | | Peak Ground Acceleration | 0.13g | 0.19g | 0.35g | #### Notes: - Structure has been designated in terms of AS/NZS 1170 as Importance Level 2 structures. These include normal structures and structures not included in other importance levels. - 2) SLS Serviceability Limit State. As of latest Guidance two SLS cases must be considered. - ULS Ultimate Limit State. ## 8.4 Measured Groundwater Levels Groundwater was not encountered within 19 of the 23 hand auger boreholes. The remaining four hand auger boreholes (HA1, HA7, HA10 and HA22) encountered groundwater at between 1.25m and 1.5m bgl at the northern and western end of the site, and at approximately 0.6m bgl in the south of the site, near the Southbrook Stream. Results are summarised in Table 8. Table 8: Summary of Measured Groundwater in Hand Auger Tests | Test ID | Termination
Depth | Water Table Depth (m) | Date | |---------|----------------------|-----------------------|------------------| | HA1 | 1.7m | 1.5 | 18 December 2018 | | HA2 | 0.7m | Not encountered | 17 December 2018 | | HA3 | 0.75m | Not encountered | 18 December 2018 | | HA4 | 0.67m | Not encountered | 17 December 2018 | | HA5 | 0.95m | Not encountered | 20 December 2018 | | HA6 | 1.0m | Not encountered | 20 December 2018 | | HA7 | 1.1m | Scala wet below 1.25 | 18 December 2018 | | HA8 | 0.7m | Not encountered | 18 December 2018 | | HA9 | 1.25m | Not encountered | 17 December 2018 | | HA10 | 1.1m | Scala wet below 1.50 | 17 December 2018 | | HA11 | 0.8m | Not encountered | 20 December 2018 | | HA12 | 0.95m | Not encountered | 20 December 2018 | | HA13 | 0.45m | Not encountered | 18 December 2018 | | HA14 | 0.65m | Not encountered | 21 December 2018 | | HA15 | 1.0m | Not encountered | 21 December 2018 | | HA16 | 0.7m | Not encountered | 21 December 2018 | | HA17 | 0.85m | Not encountered | 21 December 2018 | | HA18 | 0.65m | Not encountered | 21 December 2018 | | HA19 | 0.9m | Not encountered | 21 December 2018 | | HA20 | 0.55m | Not encountered | 21 December 2018 | | HA21 | 0.85m | Not encountered | 21 December 2018 | | HA22 | 1.1m | 0.6 | 21 December 2018 | | HA23 | 0.8m | Not encountered | 21 December 2018 | Groundwater monitoring piezometers were installed in boreholes BH1 and BH3 to BH6. Readings have been taken from these boreholes four times since they were installed. The results of the groundwater monitoring are shown in Table 9. Groundwater levels were recorded within boreholes BH1 and BH3 to BH6 between approximately 0.9m to 1.8m bgl based on piezometer readings between 19 December 2018 and 2 August 2019. It should be noted that when the groundwater measurements were taken in December 2018, there had been high rainfall recorded in area between the 19 December and 21 December. It should also be noted that the groundwater readings taken in December 2018 were taken immediately preceding the drilling works and that water was added to the hole to assist the drilling process. However, it is unlikely that the drilling water added to the hole will have had a significant impact upon the groundwater level due to the coarse-grained geology underlying the site. Based on the levels recorded to date, there appears to be very little variation in the groundwater level between summer and winter. **Table 9: Piezometer Test Results** | Test ID | Measured Groundwater Depth | Date | |---------|----------------------------|------------------| | | 1.23m | 19 December 2018 | | DUA | 1.26m | 21 December 2018 | | BH1 | 1.28m | 08 January 2019 | | | 1.30m | 02 August 2019 | | | 1.41m | 20 December 2018 | | BH3 | 1.71m | 21 December 2018 | | рпэ | 1.41m | 08 January 2019 | | | 1.57m | 02 August 2019 | | | 1.71m | 20 December 2018 | | BH4 | 1.76m | 21 December 2018 | | БП4 | 1.72m | 08 January 2019 | | | 1.82m | 02 August 2019 | | | 1.34m | 19 December 2018 | | BH5 | 1.37m | 21 December 2018 | | СПО | 1.35m | 08 January 2019 | | | 1.44m | 02 August 2019 | | | 0.88m | 20 December 2018 | | BH6 | 0.91m | 21 December 2018 | | рпо | 0.90m | 08 January 2019 | | | 0.95m | 02 August 2019 | The groundwater level typically grades from the north-west of the site towards the south-east, consistent with the slope of the ground surface (see Figure 4). However, in close vicinity of the stream the groundwater elevation decreases more rapidly to the south indicating that the groundwater is likely to be discharging into the drainage channel at the southern end of the site. At the north-west corner of the site, groundwater levels appear to be locally constant at around RL 25.0m LVD. To the west of this area (i.e. upslope) are a series of stormwater ponds that appear to permanently contain water. It is possible that the stormwater ponds are acting to locally recharge the groundwater in the north-western portion of the site. For the portion of the site that is at least 50m from the southern stream channel, a median groundwater level of 1.3m is considered appropriate for planning purposes. Within 50m of the stream, reduced ground levels are likely to result in somewhat shallower groundwater (see Figure 4) provides approximate groundwater contours for the site based on the data measured to date. Figure 4: Preliminary Median Groundwater Contours from Site Observations ## 9.0 Geotechnical Considerations and Hazards # 9.1 Bearing Capacity For residential-type structures with shallow foundations, the MBIE Guidelines state that a geotechnical ultimate bearing capacity of 200kPa may be assumed for Scala penetrometer test results of two blows/100mm. NZS 3604:2011 states that a geotechnical ultimate bearing capacity of 300kPa may be assumed for five blows/100mm down to a depth equal to twice the width of the widest footing below the underside of the proposed footing and three at greater depths. A review of the Scala penetrometer results indicates that a geotechnical ultimate bearing capacity of 200kPa is consistently available across the site from 0.35m bgl, with the exception of HA22, where 200kPa was not encountered until a depth of 0.8m bgl. A geotechnical ultimate bearing capacity of 300kPa is variable across the site (corresponding to the varying depth to gravel across the site). ## 9.2 Liquefaction Liquefaction typically occurs in recent (i.e. typically less than 10,000-years old), normally consolidated silt and sand beneath the groundwater table. It is dependent on soil density, grain size, and soil composition. As detailed in Section 8.1, the site is predominantly underlain by alluvial deposits, comprising a cap of silt and clay mixtures overlying silty and sandy gravels. A liquefaction
assessment has been completed using the Idris and Boulanger (2014). No liquefaction is predicted by the assessment. The alluvial gravel mixtures (located below the water table) are sufficiently dense to be considered non-liquefiable, while the overlying silty materials are generally above groundwater level, and also have sufficiently plasticity to be considered non-liquefiable. Results of the liquefaction analysis is shown in Appendix D. In accordance with the MBIE Guidelines, for a foundation technical category (TC) of TC1 to be applied, the SLS index settlement must be <15mm, and ULS index settlement <25mm. A review of the liquefaction analysis results indicates a TC1 classification is appropriate for the site. #### 9.3 Static Settlement Consolidation and creep settlement are not considered to be a significant issue at the site as no significant organic content (with the exception of the fill at the location of HA22) or soft clays were identified during the geotechnical investigations. #### 9.4 Earthworks The majority of cut to fill activities on site are likely to be within the silty materials encountered in the upper 0.45m to 1.7m of the soil profile. The silt is considered to be appropriate for use as engineered fill, however, care will be required to appropriately moisture condition the material prior to placement. There is the potential with compacted silty fill that a "rest" period is required following compaction of each lift, to allow the material to recover from the high internal pore pressures generated by the compaction process. This may be indicated by "weaving" of fill immediately following compaction. It is recommended to undertake earthworks during the drier summer months to facilitate moisture conditioning of fill and minimise weaving of in-situ ground when fill is placed and compacted on it. The relatively high groundwater level should be considered in the earthworks design particularly in the context of the depth of any proposed cuts across the site. The fine to medium sand and silt mixtures encountered directly below topsoil are likely to be moderately susceptible to erosion if left exposed to rainfall runoff during construction. Earthworks should be staged to minimise exposure of stripped surfaces to weather. ## 10.0 Foundation Considerations #### 10.1 Residential Foundations In TC1 zones, considering the construction is utilising lightweight materials (i.e. light cladding and roof etc.), Section 5 of the MBIE Guidelines recommends that NZS 3604:2011 solutions may be adopted provided there is "good ground" and they fall within the scope of the guidelines. Testing across the site indicated that an ultimate bearing capacity of 300kPa was not available i.e. the NZS 3604:2011 criteria for "good ground" was not met. However, 200kPa is available once topsoil is removed. Enhanced slab-on-grade foundation types are likely to be suitable, similar to the TC2 enhanced slab solutions (Option 1 to 4) set out in the MBIE Guidelines. ## 10.2 Foundations for Larger Buildings Larger structures will require specific geotechnical foundation design. On the basis of the ground conditions encountered, it is anticipated that shallow foundation systems will be feasible for these larger buildings. This may involve undercutting of surficial silty soils and replacement with imported granular fill to transfer building loads to the dense gravels generally present at around 1.5m depth. Slab-on-grade foundation systems are likely to be feasible, as well as discrete pad and strip footings. Deep foundation systems are unlikely to be necessary, but if required, significant pile capacity could be achieved with relatively shallow driven or bored piles. # 11.0 Additional Development Considerations #### 11.1 Roads Scala penetrometer blows measured in the near surface soils vary between one to seven. The soil varies from loose near the east and west of the site to medium dense centrally on the site. It is recommended to assume a loose soil with a Scala penetrometer blow count of two for preliminary design. The California bearing ration (CBR) for preliminary design has been calculated with reference to NZS 4404:2010 Section 3.3.3.2. A CBR of 3.5 may be assumed to be present below topsoil level for design of road subgrades. #### 11.2 Services The median groundwater level has been assessed to be around 1.3m bgl for portions of the site at least 50m from the stream. There does not appear to be a significant seasonal variation based on the test data collected from the piezometers on site. The location of the groundwater table should be considered during installation of services or excavation on-site. It is recommended to undertake trenching in the drier summer months. ## 11.3 Flood Management The WDC District Plan Hazards Map indicates that areas of the site are at risk of inundation during flood events. The southern edge of the site along Southbrook Stream and adjacent to the eastern property boundary are considered a medium to high hazard indicating the site is susceptible to flooding during a 1 in 200-year (0.5% annual exceedance probability) flood event with flooding of up to 2.0m above the stream possible. The majority of the flooding hazard is located within approximately 50m of the stream and a large part of the site is considered at low risk. Figure 5: Exert from Waimakariri District Council Flood Hazard Map # 12.0 Conclusions - Geotechnical investigations undertaken indicate the site is underlain by a layer of topsoil up to 0.35m thick underlain by a silt/clay alluvium mixture to a depth ranging between 0.45m to 1.7m bgl. Below this, silty/sandy gravel is encountered to a depth of at least 15.2m bgl. The encountered ground conditions are in general accordance with the regional geology. - Groundwater is generally found below 1.3m bgl across the site, however, adjacent to Southbrook Stream groundwater is encountered as shallow as 0.65m bgl where the ground drops away towards the stream. Based on nearby well data our measured groundwater depths are assumed to be representative of a median groundwater level and very little seasonal variation may be expected. - Liquefaction assessment has not identified a significant liquefaction hazard on-site. The site is considered to meet the requirements of TC1. - Appropriate foundations types for residential properties may include slab-on-grade or shallow footing options as set out in NZS 3604:2011 and the MBIE Guidelines. Based on the indicated bearing capacities the NZS 3604:2011 definition of "good ground" was not met, indicating that residential foundations will require specific engineering design, or alternatively the enhanced slab foundation options provided for TC2 sites may be applied where ultimate bearing capacity of 200kPa is demonstrated. - For larger buildings, shallow foundation systems are preferred. Allowance for removal and replacement of surficial silty soils should enable relatively high bearing capacities to be developed to support building loads. - Preliminary design of road pavements may assume a CBR of 3.5 is available once topsoil is stripped. - It is recommended that earthworks and trenching work be undertaken during summer, to minimise the potential for groundwater issues and to enable fill to be most readily moisture conditioned. - The geotechnical investigation results show that the land subject to the plan change is appropriate for residential development with no significant geotechnical issues which would affect future development. ## 13.0 Limitation This report has been prepared solely for the benefit of Summerset Villages (Rangiora) Limited as our client, with respect to the brief, and consent authorities in processing the consent(s). The reliance by other parties on the information or opinions contained in the report will, without our prior review and agreement in writing, be at such parties' sole risk. Recommendations and opinions in this report are based on data from limited test positions. The nature and continuity of subsoil conditions away from the test positions are inferred, and it must be appreciated that actual conditions could vary considerably from the assumed model. During excavation and construction, the site should be examined by an engineer or engineering geologist competent to judge whether the exposed subsoils are compatible with the inferred conditions on which the report has been based. It is possible that the nature of the exposed subsoils may require further investigation and the modification of the design based upon this report. APPENDIX A **Borehole Logs** 22 Moorhouse Ave. Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel. 03 379 4402 Email: rileychch@riley.co.nz Auckland: PO Box 100253, North Shore, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel. 09 489 7872 Email: riley@riley.co.nz # GEOTECHNICAL AND **GEOLOGICAL INFORMATION** #### SOIL TYPES AND SYMBOLS FILL **TOPSOIL** SILT SAND **GRAVEL** CLAY **PEAT** GROUNDWATER LEVEL 10,11,10 SCALA PENETROMETER LAST 3 NUMBER OF BLOWS PER 50mm INCREMENT # **ROCK TYPES AND SYMBOLS** SANDSTONE **BASALT** SILTSTONE TUFF MUDSTONE **IGNIMBRITE** LIMESTONE GREYWACKE LINICONFINED # SOIL STRENGTH CLASSIFICATION #### FINE GRAINED COHESIVE SOILS | · · · · · · · · · · · · · · · · · · · | | _ | |---------------------------------------|--|-----------------------------------| | TERM | FIELD IDENTIFICATION | UNDRAINED SHEAR
STRENGTH (KPa) | | Very Soft
(Vs) | Exudes between fingers when squeezed. | <12 | | Soft (S) | Easily indented by fingers. | 12 – 25 | | Firm (F) | Indented only by strong finger pressure. | 25 - 50 | | Stiff (St) | Indented by thumb pressure. | 50 - 100 | | Very Stiff (VSt) | Indented by thumbnail. | 100 - 200 | | Hard (H) | Difficult to indent by thumbnail. | 200+ | # SPT & SCALA PENETROMETER RESULTS | TERM | SPT VALUE
No. of BLOWS/300mm | SCALA PENETROMETER No. of BLOWS/100mm | |--------------
---------------------------------|---------------------------------------| | very dense | >50 | 17+ | | dense | 30 - 50 | 7 – 17 | | medium dense | 10 - 30 | 3 - 7 | | loose | 4 - 10 | 1 - 3 | | very loose | 0 - 4 | 0 - 2 | | | | | ## **ROCK STRENGTH CLASSIFICATION** | TERM | | FIELD IDENTIFICATION | UNIAXIAL COMPRESSIVE STRENGTH (MPa) | |----------------------|------|--|-------------------------------------| | Extremely
weak | (EW) | Indented by thumbnail. | < 1 | | Very
weak | (VW) | Crumbles under firm blows wit
point of geological hammer.
Can be peeled with pocket kn | | | Weak | (W) | Difficult to peel with pocket k | nife. 5 - 20 | | Moderately
strong | (MS) | Cannot be scraped or peeled with pocket knife. | 20 - 50 | | Strong | (S) | More than one blow of geolog hammer to fracture. | ical 50 - 100 | | Very
strong | (VS) | Many blows of geological hammer to break. | 100 - 250 | | Extremely strong | (ES) | Can only be chipped with geological hammer. | 250+ | #### MOISTURE CONDITION | Dry (D) | Looks and feels dry; powdery and friable. | |---------------|---| | Moist (M) | Feels cool; darkened in colour; no free water when remoulded. | | Wet (W) | Feels cool; darkened in colour; free water forms on hands. | | Saturated (S) | Free water is present on sample. | ## SAMPLE TYPES #### DRILLING METHOD ## FIELD TESTS UNDISTURBED MACHINE AUGER DISTURBED HAND AUGER DISTURBED STANDARD PENETRATION TEST (solid cone) STANDARD PENETRATION TEST (hollow cone) OB OPEN BARREL TT TRIPLE TUBE WB SH RC SPT WASH BORE UNDISTURBED SHELBY TUBE ROCK CORE STANDARD PENETRATION TEST V SHEAR VANE (corrected to BS:1377) R REMOULDED STRENGTH Ρ POCKET PENETROMETER CH CLEGG HAMMER INFORMATION BASED ON THE NZ GEOTECHNICAL SOCIETY INC. GUIDELINES FOR THE CLASSIFICATION AND DESCRIPTION OF SOIL AND ROCK FOR ENGINEERING PURPOSES GEOLOGICALINFO.DWG REV. 3 | Projec
Sumr | ot: | | | ax: +643 379440
e Diligence | 3 | Locatio | | /South B | elt, Rang | iora | | | osition:
to Site | | | | <u> </u> | No.: | |-----------------------------|-----------|---|--|--|---|--|-------------------------|---|---|---------------------|---------------------------------------|-----------------|--|--|---------------------------------|---|---|--| | lob N | | 743 | ; | Start Date: | | ·12-18
·12-18 | Groui | nd Level (
24.80 | (m LINZ): | | | | M2000
N 5,2 | | 32 | | H | A 01 | | Client
We | | Deve | elopments | s Ltd | | | | Hole De | pth: | | .,000 | , | | | | | Sheet: 1 | of 1 | | (ZNIZ)
(W LINZ)
24.80 | Depth (m) | Geological Unit | | Geologica
to separate Ge
ormation sheet | otechni | cal and Ge | | Legend | (I | ar Strengtl
(Pa) | | (blows | netromet
/ 50 mm) | Sround | Soil Moisture | Samples | Te | sts | | 24.50 | - 0.30 | (TOPSOIL) | SILT, trace
soft"; dry t
(TOPSOIL | e clay, organics
o moist; low pl
) | s; dark t | orown. "Sof
organics, r | it to very
rootlets. | \(\frac{\pi_{\lorenty}}{\pi_{\lorenty}}\) | 50 10 | 0 150 200
 | /
/
/ | 3 6 | 9 12

 | 2 15 | | ES0.1
NOV | No. 1
1, 0, 1,
1, 1, 1,
1, 1, 1,
1, 2, 1,
2, 1, 1,
1, 2 | | | | - | | orange mo
medium. (
FORMATI
0.45m Gra | or to some clay ottling. Soft; mo YALDHURST I ON) ades to 'firm'. ht grey with ora | oist; Iow
MEMBE | plasticity;
R, SPRINC | sand, fine | e to $\frac{\times}{\times}$ | | | + | | | | | ES0.5
NOV | | | | - | | RST MEMBER, SPRINGSTON FORMATION) | 0.60m Gra | ades to very stii | ff. | | | × × × × × × × × × × × × × × × × × × × | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | ES0.9
NOV | | V= 184
R= 46 | | 23.30 | - 1 | (YALDHURS | 1.00m Gra | ades to hard. | | | | × × × × × × × × × × × × × × × × × × × | | | | | 1.0 |

 | | | No. 2
1, 2, 2,
2, 2, 2,
2, 2, 1,
4, 4, 7,
9, 20 | v- 230 | | | - | | saturated;
medium. | e to medium Gl
gravel, subrou
tades to 'very d | nded; g | | | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | 3.10 | 1.70 | | | | | | | 000 | | | |

 - | |

 | | | \bigvee | | | | | | EOH @ 1. | 70 m | | | | | | | | | 1./ | '0m'

 | | | <u> </u> | | | S
b
P
Y
S
In | =Peak, | netroi
mm
lity T
Hamr
ie Sh
R=Re | est
ner
ear Strengtl | La
U·
n (kPa) $\frac{1}{\overline{1}}$ W | arge Dis
100 Und
ater Str
ater Ris | sturbed San
turbed San
disturbed S
rike (1st, 2r
se (1st, 2nc
e (minutes) | nple
ample
ad) | X No Slow | DWATER t Encounte w Seep (cooled Inflow ERMINAT | ered
lepth) |
O: | | 1. Coo
and su
2. Stre
shear
cohesi | bject to s
ngth terr
vane test
ve soil st | surve
ns foi
whe
rengt | y confirm
r cohesiv
re availa
th terms | is based on hanation. ye soil layers able. Where no are based on ted in quotation | are based o
o shear vand
correlation | | Projec | | and Ge | ANTS Teologists | Riley Consult. 2 Moorhouse Ave Christchurch el: +643 3794402 fax: +643 3794403 | | Locati | | (South D | alt Panni- | oro. | | HAN position: | | Αl | JG | ER L | OG | |-----------------------|--------------------------------|---|-----------------------------------|--|--|--|-------------------------------|--|--------------------------|---|----------|--|--------------------------------------|---|---|---|---| | Job N | o.: | 0743 | | e Diligence
Start Date: | | 12-18 | _ | d Level | elt, Rangio
(m LINZ): | Co-Ordin | ates (NZ | TM2000): | | | \dashv | HA | A 02 | | Client | :: | | elopment | Finish Date | 9: 17- | 12-18 | | 25.80
Hole De
0.70 n | epth: | E1, | 566,352. | 6 N 5,203 | ,5/6 | ./ | | Sheet: | of 1 | | Elevation
(m LINZ) | Depth (m) | Geological Unit | (refer | Geological
to separate Geo
formation sheet | otechnic | al and G | | Legend | Soil Shea
(kF | Pa) | (blows | enetrometer
s / 50 mm) | Groundwater | Soil Moisture | Samples | Tes | its tits | | +25.80 | . 0.25 | (TOPSOIL) | moist; lov | e clay, organics,
v plasticity; orga
ades to include e
e. | nics, ro | otlets. (TC | OPSOIL) | \(\frac{\lambda}{\lambda}\) \(| | 150 200 | 3 6 | 9 12 1 | δ | ESS | 60.1
DV | No. 1
3, 2, 2,
2, 2, 2,
1, 2, 2,
3, 2, 3,
2, 3,
12, 13, | | | - | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | orange m
sand, fine
SPRINGS | or
to some clay, ottling. Firm to so to medium. (YATON FORMATION FOR | stiff; moi
ALDHUF | and; light
ist; low pli
RST MEM | grey and
asticity;
BER, | × × × × × × × × × × × × × × × × × × × | | | | | | | | | | | -25.10 | 0.70 | - | 0.60m Au
recovered | ger grating on ir
). | nferred ç | gravel (no | ne | × × × × × × × × × × × × × × × × × × × | | | | | | ES | 60.5
DV | \
\
\ | V= 230 | | | -1 | | | | | | | | | | | 0.85m | | | | • | | | - | | | | | | | | | | | | | | | | | | | ▼ Soil N | =Peak,
//oisture
ry; M = | enetro
mm
bility T
Hami
ne Sh
R=Re
able t | est
ner
near Strengt | h (kPa) Wa Wa Wa Ris | rge Dist
100 Undi
ater Stri
ater Ris
se Time | turbed Sa
urbed Sal
isturbed S
ke (1st, 2
e (1st, 2n
(minutes | mple
Sample
and) | X No Slo | et depth X | epth)
depth)
D DUE TO:
Refusal | Collapse | and subjec
2. Strength
shear vane
cohesive so
Scala test i | ates a
t to su
terms
test v | urvey of
s for convere
where
ength | confirm
ohesive
availab
terms a
indicat | e soil layers a
ble. Where no
are based on
ed in quotatio | re based on
shear vane,
correlation wit
n marks. | | | mensi | ions
le 1: | in metres | Contracto | or: | | | | | ant Used:
Auger 70 m | ım | | | | L | .ogged by:
AvD | Checked b | | Projec | | and Ge | ANTS Tologists | Riley Consu
22 Moorhouse Ave
Christchurch
Fel: +643 379440
Fax: +643 37944 | e
02
03 | Locatio | | 1/South P | elt, Rangio | ra | | position: | | Αl | UG | ER LO | OG
lo.: | | |----------------------------------|--------------------------|---|--|--|--|---|----------------------------|--|--|-------------------------------------|----------|--|---|------------------------------------|--|---|---|-------------| | Job N | o.: |)743 | | Start Date | e: 18- | 12-18 | | nd Level | (m LINZ): | Co-Ordin | ates (NZ | TM2000): | | | | H | 403 | | | Client
We | <u> </u> | | elopment | | lle. 10- | 12-10 | | 24.40
Hole De
0.75 n | epth: | <u>E1</u> | ,566,431 | .0 N 5,203 | 3,581 | .4 | | Sheet: 1 | of 1 | | | Elevation
(m LINZ) | Depth (m) | Geological Unit | | Geologica
to separate G
formation shee | eotechnic | cal and Ge | | Legend | Soil Shea
(kF | Pa) | (blows | enetrometer
s / 50 mm) | Groundwater | Soil Moisture | Samples | Tes | its | Instrument/ | | 24.40 | - | (TOPSOIL) | low plasti | e clay, organics, city; organics, | rootlets. | (TOPSOIL |) | | 50 100 | 150 200
 | 3 6 | 9 12 | 15 | E | ES0.1 \NOV | No. 1
2, 1, 1,
2, 1, 1,
1, 2, 1, 1,
2, 1, 2,
2, 2, 3,
6, 5, 9,
19 | | | | 24.10 | 0.30 | (YALDHURST MEMBER, SPRINGSTON FORMATION) | SILT, min
and yellow
plasticity;
MEMBER | or to some cla
wish-brown mo
sand, fine to r
R, SPRINGSTO | ay, trace s
ottling. "F
medium.
DN FORM | and; grey
irm"; mois
YALDHUI
ATION) | with oran
t; low
RST | \(\frac{\lambda \frac{\lambda}{\lambda}}{\times \times \ | | | | | | | `` | | | | | 23.65 | -
-
0.75 | | 0.60m Gr | ades to very st | tiff. | | | × × × × × × × × × × × × × × × × × × × | | | • | | | P | ES0.5
NOV | \
\
\
\ | V= 197
R= 56 | KOKOKOKOK | | | -
- 1 | | | | | | | | | | | | + | | | V | - | | | | | | | | | | | | | | | | | | | S
b
V
P
V
Ir
V | =Peak, | netro
mm
ility T
Hami
ne Sh
R=Re | est
ner
ear Strengt | th (kPa) | arge Dis
J100 Und
Water Str
Water Ris | turbed Sar
turbed Sar
isturbed S
ike (1st, 2nd
e (1st, 2nd
t (minutes) | mple
sample
and) | X No Slo Rap | IDWATER It Encounter W Seep (de oid Inflow (c | pth)
lepth)
D DUE T <u>O:</u> | Callana | and subjection 2. Strength shear vand cohesive so Scala test | ates a
ct to s
h term
e test
soil str | urvey
is for
where
rength | confirr
cohesi
e availa
terms | ns based on ha
mation.
we soil layers a
able. Where no
are based on
ated in quotatio | re based of
shear var
correlation | on
ne, | | satur | _{ated}
mensi | | in metres | 10 1 | ctor: | | | range | | ant Used: | Collapse | | | | | Logged by: | Checke | | | Projec | | and Ge | ANTS Teologists | Riley Consu
2 Moorhouse Av
Christchurch
fel: +643 37944
fax: +643 37944 | 02
03 | Locatio | | ICa. Al- E | alt Dawn | | | HAN position: r to Site Pla | | AU | GI | | DG | | |-----------------------|---------------------------|---|---|---|--|---|------------------------|---------------------------------------|---|-------------------------------------|-----------|---|--------------------------------------|--|--|--|--|-------------------------| | Job N | o.: | | | e Diligence
Start Date | e: 17- | 12-18 | | d Level | elt, Rangio
(m LINZ): | Co-Ordin | nates (NZ | TM2000): | | | | HA | \04 | | | Clien | t: | 0743

Dev | elopment | Finish Da | ite: 17- | 12-18 | | 23.70
Hole De
0.70 n | epth: | E1 | ,566,509. | 8 N 5,203, | ,591 | .9 | | Sheet: | of 1 | | | Elevation
(m LINZ) | Depth (m) | Geological Unit | (refer | Geologica
to separate Gormation she | eotechni | cal and Ge | | Legend | Soil Shea
(kF | Pa) | (blows | enetrometer
s / 50 mm) | Groundwater | Soil Moisture | Samples | Tes | ts | Instrument/
Backfill | | +23.70 | -
-
0.25 | (TOPSOIL) | low plasti | e clay, organic
city; organics,
ades to 'stiff'. | rootlets. | (TOPSOIL | .) | | 50 100 | 150 200
 | 3 6 | 9 12 1 | | ESC
NOV |).1
V | No. 1
2, 1, 2,
1, 2, 3,
2, 3, 4,
3, 3, 3,
3, 4,
16, 20 | | | | | - | (YALDHURST MEMBER, SPRINGSTON FORMATION) | plasticity: | or to some cla
wish-brown m
sand, fine to
; SPRINGSTO | medium. | (YALDHUF | oist; low Š
RST | × × × × × × × × × × × × × × × × × × × | | | /
 | | | ESC
NO\ | 0.5
V | | V- 220 | | | +23.00 | 0.70 | - | 0.60m Gr | ades to hard. | | | | × <u>×</u> | | X

 | 1 | | | | | | V= 230 | | | | -1 - | | | | | | | | | | | | | | | • | | | | ₩ S | /=Peak,
//Oisture | netro
mm
ility T
Hami
ne Sh
R=Re | est
mer
near Strengt
esidual,
o penetrate | h (kPa) | arge Dis
J100 Und
Water Str
Water Ris | sturbed Sar
turbed Sar
disturbed S
rike (1st, 2nd
se (1st, 2nd
e (minutes) | mple
Sample
and) | X No Slo | IDWATER It Encounter W Seep (de bid Inflow (c ERMINATE et depth X | pth)
lepth)
D DUE T <u>O:</u> | Collapse | and subject
2. Strength
shear vane
cohesive so
Scala test r | ates a
t to
su
terms
test v | irvey co
s for col
where a
ength te | onfirma
hesive
availab
erms a | based on ha
ation.
e soil layers a
le. Where no
ire based on a
d in quotation | re based o
shear van
correlation | on
e, | | satur | _{ated}
imensi | | in metres | 10 1 | ctor: | | | | Rig/Pla | ant Used:
Auger 70 n | | | | | Lo | ogged by: | Checke
CF | | | Projec | | and Ge | ANTS T | 2 Moorhouse Ave
Christchurch
Fel: +643 3794402
Fax: +643 379440 | Locatio | | WO . # 7 | | | | position: | | Al | UG
 | ER LO | OG | |---------------|--|--|---------------------------------------|--|---|------------------------|---------------------------------------|--------------------------------|----------|-----------|-----------------------------|---|----------------|--------------------|--|----------------| | Sumn
Job N | 0.: | | | e Diligence
Start Date: | 20-12-18 | 1 | | elt, Rangio
(m LINZ): | Co-Ordii | nates (NZ | er to Site Pla
ZTM2000): | | | | HA | A 05 | | Client
We | : |)743
——
Deve | elopment | | e: 20-12-18 | | 22.90
Hole De
0.95 m | epth: | E 1 | ,566,584 | l.7 N 5,203 | 3,613 | 3.4 | | Sheet: | of 1 | | 00 (m LINZ) | Depth (m) | Geological Unit | | to separate Ge | I Description entechnical and Get for further information | | Legend | Soil Shea
(kF | | | Penetrometer vs / 50 mm) | Groundwater Groundwater | Soil Moisture | Samples | Tes | its | | 22.65 | 0.25 | (TOPSOIL) | 0.20m Gr | ades to 'soft'. | s; dark brown. "Vei
rganics, rootlets. (| | y | | | | | | E | ES0.1
NOV | No. 1
0, 0, 1,
0, 1, 1,
1, 1, 2,
1, 1, 2,
2, 1, 2,
1, 2, 2,
4 | | | - | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | orange m
sand, fine
SPRINGS | ottling. "Soft" m | , trace sand; light
oisit to wet; low pla
ALDHURST MEMI
(ON) | asticity; | × × × × × × × × × × × × × × × × × × × | | | | | | 13 | ES0.5 \ | | | | 21.95 | 0.95
- 1 | (УАLDHU | 0.90m Gr
grey with | orange mottling
e; sand, fine to | some gravel and s
g; gravel, medium,
medium. | | | | | | |

 | E | ES0.9 \
NOV | No. 2
4, 6, 5,
9, 12,
17 | | | - | | | | | | | | | | | 1.25m | | | | • | | | S bl P S In V | =Peak, | netroi
mm
ility T
Hamr
ne Sh
R=Re | est
ner
ear Strengt
esidual, | h (kPa) | mall Disturbed Sar
arge Disturbed Sar
100 Undisturbed S
'ater Strike (1st, 2n
'ater Rise (1st, 2n
ise Time (minutes) | mple
Sample
and) | X No Slow | DWATER It Encounter W Seep (de | pth) | | and subject | ates a | urvey
s for | confirn
cohesiv | is based on ha
nation.
ve soil layers a
ted in quotatio | re based on | | D = d | ry; M =
ated
mensi | moist | ; W = wet;
in metres | S = | | | | et depth X | _ | Collaps | е | | | I | _ogged by:
AvD | Checked
CFC | | Projec | | and Ge | ANTS | 2 Moorhous
Christchurch
fel: +643 37
fax: +643 3 | 794402
3794403 | - 1 | _ocatio | | South F | Belt, Rangio | nra | | HAN position: to Site Pla | | AL | JGI | ER L | OG
lo.: | | |----------------|---|--|--|---|--|--|---|---------------------------------|--|---|-------------------|-----------|--|--|--|--|--|--|-------------| | Job N | o.: | | | Start [| Date: | 20-12 | 2-18 | | d Level | (m LINZ): | Co-Ordii | nates (NZ | ΓM2000): | | | | Н | 406 | | | Client
We | : |)743
Deve | elopment | | Date: | 20-12 | -18 | | 21.3
Hole De
1.00 r | epth: | E1 | ,566,673. | 8 N 5,203 | 3,632 | 4 | | Sheet: | of 2 | | | (m LINZ) | Depth (m) | Geological Unit | (refer | | ate Geote | | and Ge | | Legend | (kl | r Strength
Pa) | | enetrometer
/ 50 mm) | Groundwater Groundwater | Soil Moisture | Samples | Tes | sts | Instrument/ | | 21.15 | 0.15 | (TOPSOIL) | SILT, trac
moist; lov
(<2mm) (| plasticity | y; organí | greyish b
ics, rootle | rown. "\
ets and | /ery soft";
roots | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | , | | ,
 | | | ES | 60.1 | No. 1
1, 0, 1,
0, 1, 1,
2, 1, 2,
1, 1, 2,
2, 1, 2,
2, 1, 2, | | | | | | | SILT, min
and yellow
plasticity;
MEMBER
0.20m Gr | sand, fine
, SPRING | e to med
SSTON F | race san
ng. Very
dium. (YA
FORMAT | d; grey v
soft; mo
ALDHUF
TON) | with orange
pist; low
RST | × × × × × × × × × × × × × × × × × × × | | | | | | NC |)
) | 2, 8 | | | | - | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | 0.55m Tra
0.60m Gr | | | k. | | | × × × × × × × × × × × × × × × × × × × | | | | | | ESS NO | 50.5
V | ~ | v V= 230 | | | 20.30 | -1 ^{1.00} | | 0.90m Tra
greywack | | o mediun | m gravel, | rounde | d, | X | | | | |
 | ES
NO | 60.95
DV | No. 2 | | | | _ | | | EOH @ 1 | .00 m | | | | | | | | | | | | | 6, 8,
10, 9,
10, 9,
6, 9, 8,
8, 9, 7,
5, 4, 7,
8, 6, 5,
6, 5 | | | | - | Expla | anation | ns: | | | | | | | GROUN | IDWATER | | | Remark | (S | | | <u> </u> | | _ | | bl
P
> S | cala Pe
ows/50
ermeab
chmidt l
situ Var
=Peak, | mm
lity To
Hamn
ne Sh | est
ner
ear Strengt | | Larg
U100
1
Wate
Wate | all Disturb
ge Disturb
0 Undistu
ter Strike
ter Rise (| oed San
urbed Sa
(1st, 2n | nple ample ad) | Slo | ot Encounter
w Seep (de
pid Inflow (d | epth) | | and subject
2. Strength
shear vane
cohesive s | ct to so
n term
e test v
soil str | urvey of
s for co
where
ength t | onfirm
ohesive
availab
erms a | s based on ha
ation.
e soil layers a
ble. Where no
are based on
ed in quotation | are based of
shear van
correlation | on
ne, | | Soil | TR sturé | ble to | esidual,
o penetrate
; W = wet; | Ī | | e Time (n | | | _ | ERMINATE et depth X | | Collapse | | | | | | | | | satura | ated | | ; w = wet;
in metres | | tractor | r: | | | | | ant Used: | | | | | L | ogged by: | Checke | | | Proje
Sun
Job | nmerse
No.:
17 | t Ran | | | | | | | | | | | HAN | | | | | | | |---------------------|---|--|---------------------------|--|--|---|------------------------|--------------|-----------------------|-------------------|------------------------------------|-----------|--|-----------------------------------|---|---|--------------------------------------|--|-------------------------| | | 17 | | giora Du | e Diligeno | се | Location | | d/South | n Bel | t, Rangio | ra | Hole po | osition:
to Site Pla | n. | | | N | lo.: | | | Clie | | 0743 | | Start Da | ate: 20-
Date: 20- | -12-18
-12-18 | Grou | | el (n
.30 | ı LINZ): | | ates (NZT | M2000):
N 5,203 | 632 | . 4 | | HA | 406 | | | | | | lopment | | | | | Hole
1.00 | Dep | th: | , | 000,070.0 | 110,200 | ,002 | •• | s | heet: | of 2 | | | Elevation (m LINZ) | Depth (m) | Geological Unit | | Geologi
to separate
formation sh | | cal and Ge | | - | Legend | Soil Shear
(kF | - | | netrometer
50 mm) | Groundwater | Soil Moisture | Samples | Tes | ts | Instrument/
Backfill | | | -2 | | | | | | | | | | | | 2.00m | | | | • | | - | | | -3 | | | | | | | | | | | | | | | | | | _ | | Exp | -
-
Janatio | | | | | | | GRO | UND | | | | Remark | s | | | | | -
-
- | | Soi
D = | V=Peak,
UTP=Un
Moistur
dry; M =
irated | Omm
bility Te
Hamm
ne She
R=Res
able to
moist; | est
ner
ear Strengt | S = | Large Dis
U100 Und
Water Str
Water Ris
Rise Time | sturbed Sar
sturbed Sar
disturbed S
rike (1st, 2r
se (1st, 2nd
e (minutes) | mple
Sample
and) | HOLE | Slow
Rapid
E TE | depth X | oth)
epth)
D DUE T <u>O:</u> | Collapse | and subject 2. Strength shear vane cohesive so | t to s
term
test
oil str | urvey co
is for co
where a
rength to | onfirmat
hesive s
available
erms are
adicated | ion.
soil layers a
e. Where no | nd-held GPS re based on shear vane, correlation wi n marks. Checked | ith | | Projec | | and Ge | ANTS
ologists | Riley Consul
22 Moorhouse Ave
Christchurch
Tel: +643 3794402
Fax: +643 379440 | 2 | Locatio | on:
send Rd/s | South F | Sel+ | Ponci | ioro | | | Hole | oositio | | | Αl | JG | ER L | No.:
| | |-----------------------|--------------------------|--|---|--|---|--|------------------------------|---------------------------------------|----------------------------------|------------------|-----------------------|------------------------------|---------|---------|--|---|--|---|--|---|-------------------|-------------| | Job N | 0.: |)743 | | Start Date: | | 12-18 | Ground | Level | (m L | | | Co-Ord | | s (NZ | TM20 | 00): | | | | F | IA07 | | | Client | : | | elopmen | | e. 10- | 12-10 | | 24.5
Hole De
1.25 r | epth | - | | <u> </u> | 1,50 | 6,267. | 9 N | 5,203, | 4/8 | .6 | | Sheet: | I of 1 | | | Elevation
(m LINZ) | Depth (m) | Geological Unit | | Geologica
or to separate Geoformation sheet | otechnic | al and Ge | | Legend | | (F | (Pa | | h | • | : / 50 m | m) | Groundwater | Soil Moisture | Samples | Т | ests | Instrument/ | | +24.50 | . 0.35 | (TOPSOIL) | SILT, tra | ce clay, organics
ist; low plasticit | s; greyisi
y; organi | n brown. "cs, rootlet | Very soft to | | , | | 0 18 | 50 200 | * | 3 6 | 9 | 12 1: | 9 | E | ES0.1 \NOV | No. 1
1, 0, 0,
1, 1, 1,
0, 1, 1,
1, 2, 1,
2, 1, 1,
2, 2, 3,
4, 5 | | | | | - | (YALDHURST MEMBER, SPRINGSTON FORMATION) | and yello
plasticity
MEMBE
0.50m G | nor to some clay
wish-brown mo'r,
sand, fine to m
R, SPRINGSTOI
rades to 'firm'. | ttling. "S
ledium. (
N FORM | oft"; moist
YALDHUF | with orange
t; low
RST | × × × × × × × × × × × × × × × × × × × | - | 7 | × | | | | | | | E | ES0.5
VOV | | ✓ V= 128
R= 43 | | | +23.50 | 1 ^{1.00} | (YALDHURST M | orange r | ravelly SILT, trac
nottling. Medium
edium, subroun | dense; | moist; dila | atant; gravel | l, ^X | - | | | | | | | 1.00m | | | | No. 2
2, 3,
15, 7,
3, 2, 3,
3, 5,
11, 13,
8, 8, | | | | +23.25 | . 1.25 | | EOH @ | 1.25 m | | | | × · · × | 1 | | | | • | | | | | | | 12, 14 | | | | - | | | | | | | | | | | | | | | · | 1./5m | | | | V | | | | ▼ Soil W | =Peak,
Moisturé | netroi
mm
ility T
Hamr
ne Sh
R=Re | est
ner
ear Strenç
esidual,
o penetrate | Ugth (kPa) ↓ W
↓ W
↓ W
↓ W
↓ R | arge Dist
100 Und
/ater Stri
/ater Ris | urbed Sar
urbed Sar
isturbed S
ke (1st, 2nd
(1st, 2nd
(minutes) | mple mple Sample and) d) | Slo
Ra
HOLE 1 | ot En
ow Se
pid Ir
FERM | counte
eep (d | ered
lepth
(dep | n)
oth)
DUE T <u>C</u> | _ | ollapse | 1. C
and
2. S
she
coh
Sca
3. L
4. S | coordinate subject trength ar vane esive so la test rocated | tes a
term:
test voil stre
esults | urvey
s for o
where
ength
s and
ly kep | confirm
cohesive
availal
terms
indicatot lawn. | nation.
re soil layers
ble. Where
are based o
ted in quota | | on
ne, | | satura | _{ated}
mensi | | ; W = wet;
in metre | 10 , | or: | | | | | Rig/F | -
Plan | t Used:
ger 70 | <u></u> | | | | | | L | ogged by | | ed by | | 2 | RICONS | | ANTS | Riley Cons
22 Moorhouse
Christchurch
Tel: +643 379
Fax: +643 379 | Ave
1402 | Γ. | | | | | | | | ND | A | UG | ER L | | | |--|-----------|--|-------------------------|--|-------------------------------|-----------------------------|-------------------------|---------------------------------------|--|-----------------|-------------------------|-------------|--|--|---|--|--|---|----------------------------| | Proje
Sum | | Rar | ngiora Du | ue Diligeno | | | | /South E | Belt, Rar | ngiora | ı | | e position:
fer to Site | Plan. | | | | lo.: | | | Job N | | 0743 | 3 | Start Da
Finish D | ite: 18-
Date: 18- | 12-18
12-18 | Grour | d Level
24.5 | • | Z): | | | IZTM2000
0.3 N 5,2 | | 3.7 | | H | 408 | | | Clier
W | | Dev | elopment | ts Ltd | | | | Hole De
0.70 n | | | | | | | | | Sheet:
1 | of 1 | | | the Elevation (m LINZ) | Depth (m) | Geological Unit | | Geologi
r to separate
ıformation sh | | cal and Ge | | Legend | | (kPa | Strength
)
50 200 | | Penetrometows / 50 mm) | Ground | Soil Moisture | Samples | Tes | sts | Instrument/
Backfill | | +24.40 | 0.10 | (TOPSOIL) | SILT, trac
soft"; we | ce clay, orga
t; low plastic | nics; greyis
ity; organics | h brown. "\
s, rootlets. | Very soft t
(TOPSOIL |) <u>// //</u> | | 1 | | \ | | | | | No. 1
0, 1, 1,
1, 2, 1,
2, 1, 1,
1, 1, 1, | | | | | - | (YALDHURST MEMBER, SPRINGSTON FORMATION) | SPRING: | ce clay, trace n-brown mott e to medium STON FORM rades to 'soft | IATION)
∶to firm'. Ve | ery stiff. | | * * * * * * * * * * * * * * * * * * * | | | | | | | | ES0.1
NOV | 1, 1, 1, 1, 2, 1, 4, 9, 12, 14 | V= 141
R= 59 | | | +23.80 | 0.70 | |
0.00111 01 | rades to men | ade minor ii | ne to med | ium sanu. | * ^
* ~ | |

 |

 | | | | | | | | | | A TOTAS SO-KANGIORA ALL LAGS, UF 3 SALIMBFIRMS AND THE TRANSPORT OF THE TOWNS OF BITT FLUCTURES BIT | - 1
 | | EOH @ C |).70 m | | | | | | | | | | Orff > | | | | | - | | · • • | lanatio | | | | | | | GROUN | IDWATE | ER | <u> </u> | <u> </u> | Rem | arks | | | | | 1 | | Scala Penetrometer - blows/50mm Permeability Test Schmidt Hammer Insitu Vane Shear Strength (kPa) V=Peak, R=Residual, Soil Wois Unable to penetrate D = dry; M = moist; W = wet; S = Small Disturbed Sample Large Disturbed Sample U100 Undisturbed Undisturbed Sample U100 Undisturbed Sample Undisturbed Sample U100 Undisturbed Sample Undisturbed Sample U100 Undisturbed Sample Undisturbed Sample Undisturbed Sample U100 Undisturbed Sample | | | | | | | | | ot Encou
w Seep
pid Inflov
ERMINA
et depth | (dept
w (dep | h)
oth)
DUE TO | :
Collap | and su 2. Stre shear v cohesi Scala t 3. Loca mound 4. First | bject to singth term vane test ve soil strest resulated next ls. | survey
ns for
wher
rength
ts and
to sa | confirm cohesive availal terms in dindicate with terms in | s based on hanation. We soil layers able. Where no are based on ted in quotation and new mear south enoring gravel (as | are based of shear van correlation marks. ar horse du | on
ne,
i with
ung | | All c | | ons
le 1: | in metre: | S Contra | actor: | | | | | | t Used: | mm | | | | | Logged by: | | ed by: | | Projec | | and Ge | ANTS | Riley Consulta
22 Moorhouse Ave
Christchurch
Tel: +643 3794402
Fax: +643 3794403 | Locati | | /South B | elt, Rangio | ra | | HANI osition: to Site Plan | | AUG | SER LO | OG | | | | | |--------------|--------------------|--|--|--|---|---------------------------------|---------------------------------------|--|-------------------------------------|---|---|---|--|---|---|--|--|--|--| | lob N | o.: | 0743 | | Start Date:
Finish Date | 17-12-18 | | | (m LINZ): | Co-Ordin | ates (NZT | | | | HA09 | | | | | | | Client
We | | Deve | elopment | s Ltd | | | Hole De | epth: | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,, | | Sheet:
1 of 1 | | | | | | | | (m LINZ) | Depth (m) | Geological Unit | | r to separate Geo | Description otechnical and Gefor further information | | Legend | Soil Shea
(kF | Pa) | (blows | enetrometer
/ 50 mm) | Groundwater | Samples | Tes | sts | | | | | | 24.30 | | (TOPSOIL) | 0.02m G | ce clay, organics;
; organics, rootlef
rades to moist.
rades to minor cla | , dark brown. "So
ts. (TOPSOIL)
ay. | ft"; dry; low | | 50 100 | 150 200 | 3 6 | 9 12 16
 | | ES0.1
NOV | No. 1
2, 1, 0,
1, 1, 1,
1, 1, 1,
2, 2, 1,
2, 1, 2,
1, 2, 1,
0, 4 | | | | | | | 4.00 | 0.30 | | SILT, mir
and yello
plasticity
MEMBER | nor to some clay,
wish-brown mott
; sand, fine to me
R, SPRINGSTON | trace sand; grey
ling. "Soft"; mois
edium. (YALDHU
FORMATION) | with orang
t; low
RST | × — | | | | | | | | | | | | | | | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | 0.50m G | rades to 'firm'. | | | * | | | | | | ES0.5
NOV | | | | | | | | _ | -1 | (YALDHURST MEMBER, S | 1.00m G | rades to very stiff
rades to include r
led, greywacke | :
minor gravel, fine | to medium | | Δ | | * | 1.00m | | ES0.9
NOV | No. 2
4, 4, 4,
3, 4, 6,
11, 14, | , V= 164
R= 39 | | | | | | 3.05 | . 1.25 | | | | minor to some sa
, as above; sand, | | × × × × × × × × × × × × × × × × × × × | | | | | | | 14 | | | | | | | | | | EOH @ | 1.25 m | | | | | | | 1.45m | | | V | | | | | | | <u> </u> | anatio | | | • | and District | ma m ! - | GROUN | IDWATER | | | Remarks | | | | | | | | | | D P Soil W | =Peak,
Moisture | mm
ility T
Hamr
ne Sh
R=Re | est | Lar
U11
th (kPa)
↓ Wa
↓ Wa
↓ Ris | nall Disturbed Sarge Disturbed Sar
00 Undisturbed Sar
ater Strike (1st, 2
ater Rise (1st, 2n
se Time (minutes | mple
Sample
nd)
d) and | Slov
Rap
HOLE T | t Encounter w Seep (de oid Inflow (d ERMINATE et depth X | pth)
lepth)
D DUE T <u>O:</u> | Collapse | and subject
2. Strength
shear vane
cohesive so | to surv
terms f
test wh
il stren | ey confiner
for cohes
nere avail
gth term | ons based on harmation. iive soil layers a lable. Where no s are based on ated in quotatio | are based or
shear vane
correlation v | | | | | | atura | ated | ons | in metre | 10 1 1 | or: | | | | ant Used: | | <u> </u> | | | Logged by: | Checked | | | | | | Projec | | and Ge | NTS T | Christchurch Fel: +643 379440 Fax: +643 37944 e Diligence | 03 | Locatio | | South F | elt, Rangio | ra | | position: | | AU | GER I | No.: | | | | |---|-------------|--|-------------------------------------|--|--------------------------------------|---------------------------------|--------------------------|--|--|-------------------------------------|----------|--|---|--|--|-------------------|------------------------|--|--| | Summerset Rangiora Due Diligence Tow
Job No.: Start Date: 17-12-18
170743 Finish Date: 17-12-18 | | | | | 12-18 | 1 | d Level | (m LINZ): | Co-Ordin | nates (NZ | TM2000): | | | ŀ | HA10 | | | | | | Client: Welhom Developments Ltd | | | | | | 24.00
Hole De
1.10 n | epth: | <u> </u> | ,500,523. | 0 N 5,203 | 5,513 | .0 | Sheet:
1 of 2 | | | | | | | | 00.12 Elevation | Depth (m) | Geological Unit | | Geologica
to separate G
formation shee | eotechnic | cal and Ge | | Legend | , | r Strength
Pa) | (blows | enetrometer
s / 50 mm)
9 12 | Groundwater | Soil Moisture | odilibro
Odilibro | Tests | | | | | 23.75 | -
0.25 | (TOPSOIL) | low plasti | e clay, organic
city; organics,
or to some cla
wish-brown m | rootlets. | (TOPSOIL |) | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 150 200 | 3 6 | 9 12 | 15 | ES0. | No. 1
1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | | TOXOXOXOXOX Instrument | | | | | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | plasticity;
MEMBER
0.40m Gr | sand, fine to r
s, SPRINGSTC
ades to "stiff". | nedium. | YALDHUF
ATION) | RST | X X X X X X X X X X | | | | | | ES0. | 5 | ∨ V= 203
R= 46 | | | | | - | - | (YALDHURST MEMB | 0.80m Gr | ades to light g | rey with c | orange mo | ttling. | × × × × × × × × × × × × × × × × × × × | | | | |
 | | | | | | | | 22.95 | 1.05 | | Sandy silf
Very dens
greywack | ty GRAVEL; liç
se; moist; grav
e; sand, fine to | jht grey w
el, fine to
coarse. | — — —
Vith orange
medium, | e mottling.
subrounde | N N N N N N N N N N | | | | | | ES1.
NOV | No. 2
9, 10,
7, 8, 7,
9, 7, 6,
9, 6, 7,
7, 5, 6,
5, 8, 9,
12, 20 | | | | | | Expla | -
-
- | ıs: | | | | | | GROUN | IDWATER | | | Remari | | | V | | | | | | Scala Penetrometer - blows/50mm Permeability Test Schmidt Hammer Insitu Vane Shear Strength (kPa) V=Peak, R=Residual, Soil Wolff Length (kPa) Soil Wolff Length (kPa) D = dry; M = moist; W = wet; S = Small Disturbed Sample Large Disturbed Sample U100 Undisturbed Sample U100 Undisturbed Sample Water Strike (1st, 2nd) Water Rise (1st, 2nd) and Rise Time (minutes) | | | | | | | mple ample am) | X No Slo | ot Encounter w Seep (de bid Inflow (de ERMINATE et depth X | pth)
lepth)
D DUE T <u>O:</u> | Collapse | 1. Coordir
and subje
2. Strengt
shear van
cohesive:
Scala test
3. Located
4. Scala re | nates a
ct to so
h term
e test v
soil str
result
d on tio | urvey con
s for coh
where av
ength ten
s and ind
ly kept la | tions based or
nfirmation.
esive soil laye
vailable. Where
ms are based
dicated in quot
awn.
.50m on extrac | on
ne, | | | | | Tropierations: Tropierations: Calculation Calculat | 2 | | LE
SULTAN
and Geolo | 22 M
Chri
Tel: | ey Consideration of the consid | ve
102 | | | | | | | | HAN | ID | Αl | JG | ER L | OG | |
--|------------|--|---|---------------------------------|--|--|--|----------------------|------------|--|----------------------------|-----------------------|-----------|---|---|--|--|---|--|-------------------------| | South Permittender Final Parts | | | Donai | | | | | | d/Courth I | Dalt Dan | aioro | | | | | | | N | lo.: | | | Client: Wethom Developments Ltd Hole Depth: 1.10 m | | lo.: | | | Start Dat | e: 17- | 12-18 | | nd Level | (m LINZ | | Co-Ordina | ates (NZT | M2000): | | | | Н | 410 | | | Span Sp | | nt: | | | | ate: 17- | 12-18 | | Hole D | epth: | | E 1, | 566,523.0 | N 5,203 | 3,513 | 3.6 | | | | | | Explanations: Solid Personnet - Leave Districted Sample Solid Personnet - Leave Districted Sample X Not Encountered Remarks Rem | | | | pments I | Ltd | | | | | T | | | | | _ | Φ. | | 2 | of 2 | | | Explanations: Small Disturbed Sample Lace D | EC Cm LINZ | Depth (m | Geological U | (refer to | separate (| Geotechnic | cal and Ge | | Legend | | (kPa |) | (blows | / 50 mm) | Groundwate | Soil Moistur | Samples | Tes | sts | Instrument/
Backfill | | Explanations: Scala Penetrometer - Small Disturbed Sample Large Disturbed Sample Large Disturbed Sample Large Disturbed Sample Large Disturbed Sample A blows/50mm Not Encountered Remarks 1. Coordinates and elevations based on hand-held GPS and subject to survey confirmation | | -
-2
- | | | | | | | | | | | | 2.00m | | | | * | | - | | Explanations: Scala Penetrometer - Small Disturbed Sample Large Disturbed Sample Large Disturbed Sample A blows/50mm Large Disturbed Sample Large Disturbed Sample A Not Encountered Small Disturbed Sample A Not Encountered Small Disturbed Sample A Not Encountered | | -3 | | | | | | | | | | | | | | | | | | - | | V=Peak, R=Residual, Soil Wosturable to penetrate D = dry M = moist; W = wet; S = Water Rise (1st, 2nd) and HOLE TERMINATED DUE TO: Target depth X Refusal Collapse | Exp V | Scala Pe
blows/50
Permeat
Schmidt
Insitu Va
V=Peak, | enetrome
Imm
bility Test
Hamme
ne Shea
R=Resid | t
r
r Strength (
dual, | (kPa) ± | Large Disi
U100 Und
Water Str
Water Ris | turbed San
listurbed S
ike (1st, 2nd
se (1st, 2nd | nple
ample
ad) | X N Slo | ot Encour
ow Seep
apid Inflow
TERMINA | ntered
(depti
v (dep | n)
oth)
DUE TO: | | 1. Coordinand subjection 2. Strength shear van cohesive Scala test 3. Located | nates a
ct to so
th term
e test
soil st
t resul
d on ti | survey on
s for construction
where
rength
ts and
dy kep | confirr
cohesi
availa
terms
indica
t lawn | mation. ve soil layers a able. Where no are based on ated in quotation. | are based of shear van correlation on marks. | on
ne. | | Projec | | and Ge | ANTS - | Christchurch
Fel: +643 37944
Fax: +643 3794
e Dilligence | 403 | Locatio | | /South B | elt, Rangio | nra | | position: | | A | UG | SER LO | lo.: | | |-------------------------|---|--|--|---|---|--|----------------------|---------------------------------------|--|--|---------------|---|--|-----------------------------|---|--|---|-------------| | Job N | 0.: | 743 | | Start Dat
Finish Da | e: 20- | 12-18 | | | (m LINZ): | Co-Ordi | nates (NZ | TM2000): | | | | H | 411 | | | Client
We | <u>:</u> | | elopment | | aic. 20- | 12-10 | | Hole De 0.80 n | epth: | | 1,566,607. | 1 10 5,20 | J3,33 | ., | | Sheet: | of 1 | | | (m LINZ) | Depth (m) | Geological Unit | | Geologic
to separate (
formation she | Geotechnic | al and Ge | | Legend | (kl | r Strength | (blows | enetrometer
s / 50 mm) | Ground | Soil Moisture | Samples | Tes | sts | /tacas atou | | 22.25 | 0.15 | (TOPSOIL) | SILT, trac
soft"; moi
(TOPSOII | e clay, organi
st; low plastic
_) | ics; dark bi
city; organi | rown. "Ver
cs, rootlets | ry soft to
s. | <u>// //</u> | | 150 200

 | 3 6 | 9 12

 | 15 | | , | No. 1
0, 1, 1,
1, 1, 1,
2, 2, 2,
3, 2, 3,
2, 3, 3,
3, 8, | | 公司公司公司公司 | | | | AATION) | and yello
plasticity;
MEMBEF | or to some cl
wish-brown m
sand, fine to
R, SPRINGSTo
ades to "stiff" | nottling. "So
medium. (
ON FORM | oft"; moist | ; low | ge | | | | | | | ES0.1
NOV | 12, 15 | | | | _ | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | 0.60m Gr | ades to light ç | grey with o | range mot | ttling. | × × × × × × × × × × × × × × × × × × × | | | | | | | ES0.5 NOV | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | . V= 172
R= 43 | | | 1.60 | 0.80 | | | ades to included, greywack | | |
avel, | × × × | | | | | | | ES0.75
NOV | | | 0 V 0 V N | | - | -1 | | | | | | | | | | | 0.95 | m | | | • | | | | ▼ S
▼ P
∨ S | anatior
cala Per
lows/500
ermeab
chmidt I | netro
mm
lity T | est | th (kPa) | Small Dist
Large Dist
U100 Undi
Water Stri | urbed San
isturbed S
ke (1st, 2r | nple
ample
ad) | X No | IDWATER of Encounter w Seep (de loid Inflow (d | epth) | | and subj
2. Streng
shear va
cohesive | linates
ject to s
gth tern
ne test
e soil st | survens for
whe
rengt | y confir
r cohes
re avail
th terms | ns based on ha
mation.
ive soil layers a
able. Where nc
s are based on | are based or
shear vand
correlation | n
e, | | <u>Soil \ </u>
D = d | ry; M = ı | ble to | esidual,
o penetrate
:; W = wet; | $\bar{\Sigma}$ | Water Ris
Rise Time | | | | ERMINATE | | :
Collapse | | | | _ | , " | | _ | | satur
All di | mensi | ons
e 1: | in metres | Contra | ctor: | | | | | ant Used:
Auger 70 r | | | | | | Logged by:
AvD | Checke | | | Welhorn Developments Ltd Geological Description (refer to separate Geotechnical and Geological information has better further information) SILT trace day, organics, dark brown. Yery soft to separate Geotechnical and Geological information has better further information) SILT trace day, organics, dark brown. Yery soft to separate Geotechnical and Geological information has better further information and Geological information makes the in | Projec | | and Ge | ANTS cologists | 22 Moorhous
Christchurch
Fel: +643 37
Fax: +643 37 | 794402
794403 | Location | | /South ! | Belt | Rand | iora | | | le po | sition: | | A | .UC | SER L | No.: | | | | | | |--|---------------|--|---|---------------------------|---|----------------------------------|---|---------------------------------|---|-----------------------------------|--------------|-------------------------------|----------------------|----------|---------|--|--|----------------------------------|--|---|--|-------------|--|--|--|--| | Cilient: Well-born Developments Ltd Geological Description (refer to separate Cestechnical and Geological provided in the Cestec | | 0.: | | | Start D | Date: 20 |)-12-18 | 1 | nd Level | (m l | | | | nates (l | NZTN | //2000 |): | - 1 | | Н | A12 | | | | | | | Explanations: Solit | - | : | | | | Date: 20 | -12-10 | | Hole D | epth | : | | | ,500,0 | 94.5 | IN 5,2 | 203,33 | 5.4 | | Sheet: | neet:
1 of 1 | | | | | | | SILT, trace day, organics; dark brown. "Vary soft to soft misst low plaintoly, organics, contells." 21.35 0.15 SILT, minor to some alay, trace sand, previath variage and yellowieth-brown notifing. Soft most to well currently and fine to medium. (YALDHURST MEMBER. SPRINGSTON FORMATTON) SILT minor to some alay, trace sand, previath variage and yellowieth-brown notifing. Soft most to well currently and fine to medium. (YALDHURST MEMBER. SPRINGSTON FORMATTON) SILT minor to some alay, trace sand, previath variage and yellowieth-brown notifing. Soft most to well and plaintolly. The sand, fine to medium. (YALDHURST MEMBER. SPRINGSTON FORMATTON) SILT minor to some alay, trace sand, previath variage and yellowieth-brown notifing. Soft most to well and plaintolly. The sand, fine to medium. (YALDHURST MEMBER. SPRINGSTON FORMATTON) SILT minor to some alay, trace sand, previath variage and yellowieth-brown notifing. Soft most to well notified. notifi | | Depth (m) | Seological Unit | | to separat | te Geotechr | nical and Ge | | Legend | | (1 | kPa) | Ū | (bl | ows / : | 50 mm) | er afewballough | Soil Moisture | Samples | Т | ests | Instrument/ | | | | | | SRIT, minor to some clay trace sand; grey with orange and yellowish-town motting. SPIT most to wet (surface infiltration after rain); low to medium plasticity; sand, filter plastici | | 0.15 | | soft"; moi | st; low pla | ganics; dark
sticity; orga | brown. "Ve
nics, rootlet | ry soft to | <u>/</u> <u>\</u> | . , | | | | | | | | | ES0.1 | No. 1
0, 0, 1,
1, 1, 1,
1, 1, 1,
2, 1, 1,
2, 1, 1,
2, 2, 3, | | | | | | | | 20.55 0.95 0.95 m Solution of the tomedium signal subrounded, greywacke. EOH @ 0.95 m Explanations: GROUNDWATER Remarks | _ | | (NO | (surface i
sand, fine | nfiltration a
to mediur | after rain); Ic
m. (YALDHl | w to mediu | ım plasticit | ty; × × × × × × × × × × × × × × × × × × × | - | | | | | | | | | NOV | 8,8 | | | | | | | | 20.55 0.95 Grades to include trace to minor fine to medium x x x x x x x x x x x x x x x x x x x | - | | (YALDHURST MEMBER, SPRINGSTON FORMATI | 0.60m Lig | ght grey wi | ith orange m | nottling. Ver | y stiff. | × × × × × × × × × × × × × × × × × × × | | |

 | | | | | | | ES0.5
NOV | | ✓ V= 167
✓ R= 34 | | | | | | | Explanations: GROUNDWATER Remarks | 20.55 | 0.95 | | | | | | e to mediu | × × × × × × × × × × × × × × × × × × × | -
-
-
- | | | | | | |

 | | ES0.9
NOV | | | | | | | | | | - | -1 | | еон @ 0 | .95 М | | | | | | | | | | | | | | | No. 2
11, 12,
10 | | | | | | | | | - | - | İ |
 | Ì | 1 | | | | | | | \perp | | | | | | ▼ Scala Penetrometer - | S bl P S In V | cala Pe
lows/50
ermeab
chmidt
situ Var
=Peak, | netro
mm
ility T
Hamr
ne Sh
R=Re | est
ner
ear Strengt | | Large Di U100 Un Water S Water R | sturbed San
ndisturbed S
trike (1st, 2ndise (1st, 2ndise) | mple
Sample
nd)
d) and | X N Slo | ot En
ow Se
apid II
TERN | eep (conflow | ered
depth
(depth |)
JE T <u>O</u> : | _ | | 1. Coor
and su
2. Strei
shear v | rdinates
bject to
ngth ten
ane tes
ve soil s | surve
ns fo
t whe
treng | ey confi
or cohes
ere avai
oth term | irmation.
sive soil layers
ilable. Where
is are based o | are based
no shear va
n correlatio | on
ne, | | | | | | D = dry; M = moist; W = wet; S = Target depth X Refusal Collapse | D = d | ry; M = | moist | ; W = wet; | S = | · | | | Targ | get de | | | | Colla | pse | | | | | Logged by | : Check | _ | | | | | | Projec | | and Ge | ANTS Tologists | Riley Cons
22 Moorhouse A
Christchurch
Fel: +643 3794
Fax: +643 3794 | 402
4403 | Location | | | | | | HANI | | AU | IGI | | OG | | |---|--|---|--|--|---|--|---------------------------------|--|---|-------------------------------------|--------------------|----------------------------|----------------------------|---------------|-------------------|---|--------------------------------------|--| | Sumi
Job N | lo.: | | | e Diligeno | te: 18- | -12-18 | | |
elt, Rangio
(m LINZ): | 1 | Refer
ates (NZT | to Site Plar
M2000): | n. | | | H/ | A 13 | | | Clien | t: |)743
Devi | elopment | Finish D | ate: 18- | -12-18 | | 23.20
Hole De
0.45 n | epth: | E 1, | 566,374.5 | N 5,203, | 418 | .2 | - | Sheet: | of 1 | | | Elevation (m LINZ) | Depth (m) | Geological Unit | (refer | Geologic
to separate
formation she | Geotechni | ical and Ge | | Puegen | Soil Shea
(kF | | | netrometer
/ 50 mm) | Groundwater | Soil Moisture | Samples | Tes | | Backfill | | +23.20 | -
0.15 | ON) (TOPSOIL) | SILT, min | e clay, organics
city; organics
or to some c
wish-brown n | lay, trace s | (TOPSOIL | with orang | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 30 100

 | | | | 3 | ESI
NO | 0.1
V | No. 1
2, 2, 2,
2, 2, 3,
3, 3, 2,
9, 16,
13, 16 | | FOND STATE | | +22.75 | SILT, minor to some clay, and yellowish-brown moti medium plasticity, sand, i MEMBER, SPRINGSTON O.45 Q Refusal on inferred cobble EOH @ 0.45 m | | | | | medium. (\ | YALDHURS | × × × × × × × × × × × × × × × × × × × | | | + | | | | | | | FCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFCFC | | | - | | EOH @ 0 | .45 m | | | | | | | | | | | | \ | | | | | -1 | - | - | _ | | | | | | 1 | | | | | | | | | | | _ | | ▼ E b b c c c c c c c c c c c c c c c c c | /=Peak,
Voisture | netro
mm
ility T
Hami
ne Sh
R=Re | est
mer
ear Strengt
esidual,
o penetrate | th (kPa) $\frac{1}{2}$ | Large Dis
U100 Und
Water Str
Water Ris | sturbed Sar
sturbed Sar
disturbed S
rike (1st, 2nd
se (1st, 2nd
e (minutes) | mple
Sample
nd)
d) and | X No Slo | IDWATER of Encounter w Seep (de oid Inflow (c ERMINATE et depth X | pth)
lepth)
D DUE T <u>O:</u> | Collapse | and subject
2. Strength | ates a
t to su
terms | urvey co | onfirma
hesive | ation. | nd hand GPS
re based Scala
ss. | <u> </u> | | satur | _{ated}
imensi | | ; W = wet;
in metres | 10 (| actor: | | | rarg | Rig/Pla | ant Used: | | | | | L | ogged by: | Checked b | y: | | Projec | | and Ge | ANTS = | Riley Consulta Moorhouse Av Christchurch Fel: +643 379444 Fax: +643 37944 | 02
03 | Locatio | | 110 | oolt D | al | | | | osition: | | A | UG | ER L | OG
lo.: | | |--------------------------|---------------------------|---|--|---|---|---|--|--|---|-------------------------|------------------------------|--------|-------------------|---|--|------------------------------------|---|--|------------------------------------|-------------------------| | Job N | o.: | | | e Diligence
Start Date | e: 21- | 12-18 | | I/South E
nd Level | (m LINZ | <u> </u> | Co-Ordi | nates | (NZT | to Site I
M2000) | : | | | Н | 414 | | | Clien | t: | 0743
Deve | elopment | Finish Da | ite: 21- | 12-18 | | 26.7
Hole De
0.65 r | epth: | | E´ | 1,566, | 464.6 | 5 N 5,2 | 03,422 | 2.0 | | Sheet: | of 1 | | | Elevation
(m LINZ) | Depth (m) | Geological Unit | (refe | Geologica
to separate G
formation she | eotechni | cal and Ge | | Legend | | (kPa |) | (| blows | netromete
/ 50 mm) | Sround | Soil Moisture | Samples | Tes | sts | Instrument/
Backfill | | +26.70 | - | (TOPSOIL) | soft"; mo
(TOPSOI | e clay, organi
st; low plastic
-)
ades to "firm". | ity; organ | prown. "Ve
ics, rootlet | ry soft to | 7 1/2
1/2 1/2
1/2 1/2
1/2 1/2
1/2 1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2 | | 00 15 | 50 200
 | 3 | 6 | 9 12 | 15 0 | | ES0.1 \NOV | No. 1
0, 1, 1,
1, 0, 1,
2, 1, 2,
1, 2, 2,
1, 5,
12, 8,
8, 16 | | | | +26.40 | - 0.30 | YALDHURST MEMBER, SPRINGSTON FORMATION) | SILT, mir
and yello
plasticity;
MEMBEF | or to some cla
wish-brown m
sand, fine to i
k, SPRINGSTO | sand; grey
irm"; mois
(YALDHUI
IATION) | with oran
tt; low
RST | ge × × × × × × × × × × × × × × × × × × × | | | | | | | | | S90.5 | | | | | | +26.05 | -
0.65 | YALDHURST N | | ades to includ
sand. Very stif | | lay and tra | ace fine to | × × × | Δ |
 x
 | | | | | 1 | | ES0.5
NOV | | , V= 134
R= 36 | | | | -1 -1 - | | | | | | | | | | | | | |
 | | | V | | | | ₩ s
₩ F
V S
III | ′=Peak,
WoistUre | enetro
mm
bility T
Hami
ne Sh
R=Re
able t | est
mer
near Streng
esidual,
o penetrate | h (kPa) | arge Dis
J100 Und
Water Str
Water Ris | turbed San
turbed San
disturbed S
rike (1st, 2nd
se (1st, 2nd
e (minutes | mple
Sample
nd)
d) and | X No Slo | NDWATE of Encoun w Seep (pid Inflow FERMINA et depth | tered
(depth
(dep | n)
oth)
DUE T <u>O</u> | _ | lapse | and sub
2. Strer
shear v
cohesiv | dinates a
oject to s
ogth term
ane test
re soil st | survey
ns for
wher
rengtl | confir
cohesi
e availa
h terms | ns based on hamation. ve soil layers a able. Where no are based on ated in quotation | are based of shear var correlation | on
ne, | | satur | _{ated}
imensi | | in metres | 10 1 | ctor: | | ļ | raig | Rig | | t Used: | | iapa c |][| | | | Logged by:
RBW | Checke | | | Projec | | and Ge | ANTS Tologists F | Riley Cor
2 Moorhouse
christchurch
fel: +643 37
ax: +643 37 | e Ave
94402
794403 | Locatio | | | | | | position: | | AU | GER L | No.: | | |-----------------------------|-----------|---|----------------------------|---|--------------------------|---|----------------------------|---------------|---------------------------------|-------------------|-----------|--|--------------------------------------|---|--|---------------------------------------|-------------------------| | Sumr
Job N | 0.: | | ngiora Du | Start D |)ate: | 21-12-18 | | | elt, Rangio
(m LINZ): | 1 | | r to Site Pla
TM2000): | n. | | ⊢ н | IA15 | | | Client | <u> </u> | 743 | | | Date: | 21-12-18 | | Hole De | epth: | E 1 | ,566,544. | 2 N 5,203 | ,436 | .4 | Sheet: | | | | | | | elopments | s Lta | | | | 0.70 m | 1 | | | | - | Φ | | of 1 | \equiv | | Elevation (m LINZ) | Depth (m) | Geological Unit | | to separat | te Geoted | escription
chnical and Ge
further informa | | Legend | ` | r Strength
Pa) | | enetrometer
s / 50 mm)
9 12 1 | വ
Groundwater | Soil Moisture | Od | ests | Instrument/
Backfill | | +24.45 | . 0.25 | (TOPSOIL) | low plastic | city; organ | ics, rootle | ark brown. "Sof
ets. (TOPSOIL) |) | | | | • | | | ES0.
NOV | No. 1
1, 1, 1,
1, 1, 2,
2, 2, 3,
3, 3, 3,
4, 6,
13, 20 | | | | | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | plasticity; | sand, fine
, SPRING | to mediu
STON FO | ice sand; grey
g. "Stiff"; moist;
im. (YALDHUF
DRMATION) | with orang
; low
RST | e | | | - | | | | | | | | +24.00 | 0.70 | (YALDHURST MEN | 0.60m Gra | ades to ver | ry stiff. | | | × × × × × × × | Y | |
 | |

 | ESO.
NOV | 5 | ∨ V= 195
R= 49 | | | | -1
-1 | | | | | | | | | | | | | | • | | | | b
D
P
V
S
Ir | =Peak, | netror
mm
ility To
Hamn
ne Sh
R=Re | est
ner
ear Strengtl | h (kPa) | Large
U100
Water | Disturbed San
Disturbed San
Undisturbed S
r Strike (1st, 2rr
r Rise (1st, 2nc
Time (minutes) | mple ample am) | X No | IDWATER It Encounter W Seep (de | pth)
depth) | | and subjec
2. Strength
shear vane
cohesive so | ates a
t to su
terms
test v | urvey con
s for coh
where av
ength ten | tions based on
nfirmation.
esive soil layers
ailable. Where
ms are based of
dicated in quotal | are based on shear van on correlation | on
ie, | | D = d | ry; M = l | moist | ; W = wet; s | S = | tractor: | . , | | Targe | et depth X | Refusal ant Used: | Collapse | | | | Logged by | : Checke | ed by | | Projec | | and Ge | ANTS Tologists | Riley Cor
2 Moorhouse
Christchurch
fel: +643 379
fax: +643 37 | 94402
94403 | Location | | | | | | Hole p | osition: | | A | UC | SER L | OG | | |--|--|--|----------------------------------|---|--------------------------|---|------------
--|--------------------------------|--------------------|-------|---------|-------------------------------|---|--------------------------|----------------------------|--|-----------------------------|-------------------------| | Job N | o.: | | ngiora Du | Start D | ate: 2 | 1-12-18 | | | elt, Rang
(m LINZ): | Co-Ord | | s (NZT | to Site F
M2000) | : | | | H | A 16 | | | Client | t: |)743
Deve | elopment | | Date: 2 | 1-12-18 | | 20.90
Hole De
0.70 n | epth: | E | 1,566 | 5,624.5 | N 5,2 | 03,45 | 3.1 | | Sheet: | of 1 | | | Elevation (m LINZ) | Depth (m) | Geological Unit | (refer | Geolog
to separat | e Geotech | scription
nnical and Ge
urther informa | | Legend | Soil She | ar Strengt
(Pa) | " | | netromete
/ 50 mm)
9 12 | Groundwater | Soil Moisture | Samples | Tes | | Instrument/
Backfill | | -20.65 | -
0.25 | ORMATION) (TOPSOIL) | SILT, min and yellov plasticity; | / plasticity; | clay, trace
mottling. | k brown. "Vei
rootlets. (TO
e sand; grey
"Firm"; mois
n. (YALDHUF
RMATION) | with orang | \(\frac{1}{2}\frac{1}{ | | | | | | | | ES0.1
NOV | No. 1
1, 0, 1,
1, 0, 1,
2, 1, 2,
1, 2, 4,
10, 10,
8, 7, 8 | | | | +20.20 | - 0.70 | (YALDHURST MEMBER, SPRINGSTON FORMATION) | 0.45m Gr
0.60m Ve
0.65m Sa | • | oft". | | | × × × × × × × × × × × × × × × × × × × | A | | | | 0.60 |)

 | | ES0.5
NOV | V , | , V= 136
R= 45 | | | - | -
- 1
- | | | | | | | | | | | | |
 | | | No. 2
10, 10,
11 | | | | | - | ▼ s | anatior
Scala Pe
lows/50
Permeab | netro
mm
ility T | est | • | Large D | Disturbed Sar
Disturbed Sar
Indisturbed S | mple | X No | IDWATER of Encounter w Seep (c | ered | | | and sub
2. Stren | dinates
oject to s
ogth tern | surve
ns fo | y confi
r cohes | ons based on harmation. sive soil layers a | are based o | on | | Ir
V
<u>Soil</u>
D = d
satur | nsitu Vai
/=Peak,
//////////////////////////////////// | ne Sh
R=Re
able to
moist | ear Strengt | S = | Water f | Strike (1st, 2r
Rise (1st, 2nd
me (minutes) | d) and | HOLE T | et depth X | ED DUE T | Co | ollapse | Scala te | est resul
ted near
ttempt a | lts ar
r alig
aban | nd indic
nment
doned | s are based on
tated in quotation
of sewer mains
due to encounter
fill). | on marks.
s. Initial har | nd
I | | Projec | | | | Fax: +643 37944
ue Diligence | | Location
Towns | | South E | selt, Rangio | ora | | position:
er to Site Pla | an. | | | | lo.: | | |-------------------------|--|---|---------------------------------------|--|---|--|---------------------|--|---|--------------------|-------------------------|--|--|---------------------------------|---|--|------------------------------------|----------| | Job N | | 743 | 3 | Start Date
Finish Da | | 2-18
2-18 | Groun | d Level
22.10 | (m LINZ): | | | TM2000):
.6 N 5,203 | 3,470 | 0.0 | | H | 417 | | | Client
We | | Deve | elopmen | ts Ltd | | • | | Hole De
0.85 n | | | | | | | | Sheet: 1 | of 1 |
 | (m LINZ) | Depth (m) | Geological Unit | | Geologic
er to separate G
nformation she | Seotechnica | al and Geo | | Legend | (k | ar Strength
Pa) | | enetrometer
s / 50 mm) | Groundwater | Soil Moisture | Samples | Tes | sts | | | 21.90 | 0.20 | (TOP SOIL) | SILT, tra | ce clay, organititicity; organics, | cs; dark bro
rootlets. (T | own. "Soft
OPSOIL) | "; moist; | \(\frac{1}{2}\) \(\frac{1}{2}\ | 30 100
 | | | 9 12 | | | ES0.1 NOV | No. 1
1, 1, 1,
0, 2, 1,
1, 2, 2,
2, 1, 2,
6, 6, 6,
13 | | | | _ | - | (NC | and yello | nor to some cla
owish-brown m
/; sand, fine to
R, SPRINGSTO | ottling. "Firr
medium. (Y | m"; moist;
'ALDHUR | low | × | | | / | | | | | | | | | _ | - | (YALDHURST MEMBER, SPRINGSTON FORMATION) | 0.40m G | Grades to claye | y . | | | × × × × × × × × × × × × × × × × × × × | | | | |
 | | E90.5 | | | | | | | (YALDHURST MEMBEI | | Grades to very s | tiff. | | | × | | | | | | | ES0.5
NOV | | , V= 138
R= 43 | | | .25 | 0.85 | | | | | | | × × × × × × × × | | | | | | | ES0.85
NOV | | | | | | - 1 | | EOH @ | 0.00 III | | | | | | | †

 | 0.95m |
 | | | V | | | | | - | | | | | | | | | | | | | | | | | | | _ | - | | | | | | | | | | | | | | | | | | | - | - | | | | | | | | | | | |
 | | | | | | | Fxpla | anatior | ns. | | | | | | GROUN | IDWATER | | | Remari | ke ke | | | | | = | | ▼ S
V P
V S
Ir | cala Pe
lows/50
ermeab
chmidt
situ Vai
=Peak, | netro
mm
ility T
Hamr
ne Sh
R=Re | est
ner
lear Strenç
esidual, | gth (kPa) | Small Distu
Large Distu
U100 Undis
Water Strik
Water Rise | rbed Sam
sturbed Sa
e (1st, 2nd
(1st, 2nd | iple
ample
d) | X No | ot Encounte
w Seep (de
pid Inflow (| epth)
depth) | | 1. Coordin
and subject
2. Strength
shear vand
cohesive s | ates
ct to s
h term
e test
soil st | surve
ns for
whe
rengt | y confir
cohesi
re availa
th terms | ns based on hamation. ive soil layers able. Where no are based on atted in quotation | are based of shear var correlation | or
ne | | <u>Soil</u> | Moisturé
Iry; M = | ible to | penetrat
; W = wet | - | Rise Time (| minutes) | | | et depth X | D DUE TO: | Collapse | e | | | | | | _ | | satur
VII di | | | in metre | S Contrac | ctor: | | | | Rig/P
Hand | lant Used: | | | | | | Logged by: | Checke | | | Job No. |).:
170 | | igiora Du | | | | on:
oond Dd | /Court 5 | olt Demi | oro | | osition:
to Site Pla | | | | N | 0.: | | |---|---|--|-------------------------|---|---------------------|---|----------------|--|--|--------------------|------------|--|--|--|---|---|--|--| | Well (w INZ) +24.60 - +24.35 | | | | Start Da | ite: 2 | 1-12-18 | 1 | nd Level | elt, Rangi
(m LINZ): | Co-Ordin | nates (NZT | TM2000): | | | | HA | 18 | | | - +24.35
- +24.35 | | | elopments | Finish D | Date: 2 | 1-12-18 | | 24.60
Hole De
0.65 n | epth: | E1 | ,566,478. | 5 N 5,203 | 3,362 | 3 | 8 | Sheet: | of 1 | | | +24.35 | Depth (m) | Geological Unit | (refer | Geologi
to separate | Geotech | scription
nnical and Ge
urther informa | | Legend | (k | ar Strength
Pa) | (blows | enetrometer
/ 50 mm) | Groundwater | Soil Moisture | Samples | Test | 'S | Instrument/
Backfill | | +23.95 |
0.25 | (TOPSOIL) | low plastic | city; organic | s, rootlet | k brown. "Sot
s. (TOPSOIL |) | \(\frac{1}{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}\) \(\frac{1}{1}\) \(\frac{1}\) \(\frac\ | 50 100 | 0 150 200
 | 3 6 | 9 12 | 15 | ES NO | 0.1
V | No. 1
1, 1, 1,
0, 2, 1,
1, 1, 2,
1, 2, 3,
2, 3, 3,
2, 3, 7,
11, 22 | | | | +23.95 | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | plasticity;
MEMBER | wish-brown is sand, fine to sand, fine to sand, fine to sand, fine to sand | o mediun
TON FOF | e sand; grey
"Firm"; mois
n. (YALDHUF
RMATION) | t; low | × × × × × × × × × × × × × × × × × × × | | | | | | ES NO | 0.5
V | | W= 157 | SECTION SECTIO | | | 0.65 | (YALDI | 0.60m Grasand. Ver | | ıde trace | to minor fine | e to mediu | X X X | A
 | k

 |)
 | | | | | ~ | V= 157
R= 46 | | | - | 1 | | | | | | | | | | | 1 | | | | | | | | blov Per Sch Insi | ala Per
ows/50r
ermeabi
chmidt l | netroi
mm
lity To
Hamn | ner | • | Large D
U100 U | Disturbed Sar
Disturbed Sar
Indisturbed S | mple
sample | X No | IDWATER of Encounter of Seep (do of Inflow (| ered
epth) | | and subje
2. Strengt
shear van
cohesive | nates a
ct to s
h term
e test | urvey o
s for co
where a
ength to | onfirma
bhesive
availabl
erms ai | soil layers ar
e. Where no
re based on c | e based of
shear vand
orrelation | n
e, | | Soil Mo
D = dry
saturate
All dim | Peak, | R=Re | ear Strengt
esidual, | 1 | Water F | Rise (1st, 2nd
me (minutes) | d) and | ш . | | ED DUE TO: | | Scala test | resuit | s and ii | ndicate | d in quotatior | marks. | | | | RI
CONS
Engineers | | ANTS | Riley Co
22 Moorhou
Christchurch
Tel: +643 3
Fax: +643 3 | nse Ave
1
794402 | ai ils | Locatio | on: | | | | | | | Hole p | ositio | n: | | A | UG | SER L | OG | | |-------------------------|-------------------------|--|--------------------------------------|--|----------------------------|---|---|----------------------|--|--|------------------------|------------------------|--------------------|---|-------------------|-----------------------------|---|-------------------------------------|--------------------------------|--|---|------------------------------------|-------------------------| | Sumr
Job N | | Rar | ngiora Du | e Dilige
Start I | | 21- | Towns | 1 | d/South | | | | o-Ordi | | Refer | | | n. | | | н | A19 | | | | 170 | 743 | 1 | | Date: | | | Cioui | 25. | 70 | | | | | ,556.7 | | | 359 | .7 | | | 713 | | | Client
We | | Deve | elopment | s Ltd | | | | | Hole [
0.90 | | h: | | | | | | | | | | Sheet:
1 | of 1 | | | Elevation (m LINZ) | Depth (m) | Geological Unit | | r to separa | | technic | iption
al and Ge
er informa | | Legend | 5 5 | Soil She
(F | kPa) | Ū | | cala Pe
(blows | / 50 m | | Groundwater | Soil Moisture | Samples | Te | sts | Instrument/
Backfill | | +25.40 | . 0.30 | (TOPSOIL) | SILT, trac
soft"; mo
(TOPSOI | ist; low pla | ganics;
asticity; | dark br
organi | rown. "Ver | y soft to
s. | <u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u> | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | | | ES0.1
NOV | No. 1
1, 1, 0,
1, 0, 1,
2, 2, 2,
2, 2, 2,
2, 2, 3,
3, 4,
10, 14,
20 | | | | - | - | TON FORMATION) | plasticity
MEMBER | ; sand, fin
R, SPRINO | e to med
SSTON | dium. (
FORM | and; grey
iff"; moist
YALDHUF
ATION)
plasticity. | RST | × -: × -: × -: × -: × -: × -: × -: × -: | ×
×
×
×
× | | | | | |

 | | | | | | | | | | | (YALDHURST MEMBER, SPRINGSTON FORMATION) | | rades to w | · | | e sand. | | × - : : : : : : : : : : : : : : : : : : | ×
×
×
×
× | | |

 | | |

 | | | | ES0.5
NOV | | , V= 184
R= 50 | | | +24.80 | 0.90 | | greywacl | e. | nclude tr | race fin | e gravel, s | subround | × - | × | | | | • | | | | | | | | | | | - | -1 | | ЕОН @ 0 | | | | | | | | | | | | | | | | | | • | | | | ▼ S
▼ P
∨ S
In | =Peak, | netroi
mm
ility T
Hamr
ne Sh
R=Re | est
ner
ear Streng
esidual, | | ☐ Larg ☐ U10 1 ☐ Wa | ge Dist
00 Undi
iter Stri
iter Ris | urbed Sar
urbed Sar
sturbed S
ke (1st, 2r
e (1st, 2nc | nple
ample
ad) | X N SI | Not E
low : | WATER Encounte Seep (d | ered
lepth
(dept | h) | | | 1. C
and
2. S
shea | subject
trength
ar vane
esive so | ates a
t to si
term
test v | urvey
s for
whei
engt | y confir
cohes
re avail
h term: | ons based on himation. ive soil layers a able. Where no s are based on ated in quotation | are based of shear var correlation | on
ne, | | D = d | ry; M = | - | penetrate
; W = wet; | | ☑ Rise | e time | (minutes) | <u> </u> | | | depth X | _ | _ | _ | llapse | | | | _ | | | | | | satur
All di | mensi | ons
le 1: | in metre | Cor | ntracto | r: | | | | | Rig/F
Hand | | Used: | | | | | | | | Logged by: | Checke | | | Projec | | and Ge | ANTS Toologists F | Riley Cons
2 Moorhouse
Christchurch
fel: +643 3794
fax: +643 379 | Ave
4402
94403 | Locatio | on: | | | | | osition: | | Αl | JG | ER L | OG | |-----------------------|--|---|--|--|--|---|------------------------|---|--|-------------------------------------|-----------|--------------------------------|-------------|--------------------|-------------------------------|---|-----------------| | Sumr
Job N | | Rar | ngiora Du | e Diligeno
Start Da | | Towns
1-12-18 | 1 | | elt, Rangio
(m LINZ): | | Refer | to Site Pla | an. | | | Н | A20 | | | 170 |)743 | 3 | Finish D | | | | 20.50 |) | | 566,642.7 | | 3,365 | 5.5 | | | | | Client
We | | Deve | elopment | s Ltd | | | | Hole De
0.55 n | | | | | | | | Sheet: 1 | of 1 | | Elevation (m LINZ) | Depth (m) | Geological Unit | | | Geotech | scription
nical and Ge
rther informa | | Legend | Soil Shear
(kF | | | netrometer
/ 50 mm)
9 12 | Groundwater | Soil Moisture | Samples | Tes | rts instrument/ | | +20.25 | -
0.25 | | soft"; moi
(TOPSOIL
SILT, min
and yellov
plasticity; | st; low plast) or to some ovish-brown | clay, trace
mottling. | e sand; grey "Stiff"; moist i(YALDHUR | with oranç | \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) | | | , | | | EN | S0.1 \
OV | No. 1
1, 0, 1,
1, 1, 2,
2, 4, 3,
6, 13,
19 | | | +19.95 | -
0.55 | (YALDHURST MEMBER, SPRINGSTON FORMAT | | ades to "ver | | ŕ | | × | | | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | - | | | | | | | | | | | | | | | | | | | - | V Soil V Soil V D = d | =Peak,
Moisturé
lry; M =
ated | netro
mm
ility T
Hamr
ne Sh
R=Re
able to
moist | est
mer
ear Strengt | S = | Large
D
U100 Un
Water S
Water F
Rise Tin | isturbed Sar
isturbed Sar
ndisturbed S
Strike (1st, 2n
Rise (1st, 2nd
ne (minutes) | mple
Sample
and) | X No Slo | IDWATER of Encounter of Seep (de oid Inflow (de EERMINATE of depth X | pth)
lepth)
D DUE T <u>O:</u> | Collapse | and subje
2. Strengt | nates a | survey
as for o | confirm
cohesiv
indicat | s based on ha
nation.
re soil layers a
ted in quotatio | re based on | | | CONS
Engineers | | ANTS | Riley C
22 Moorh
Christchul
Tel: +643
Fax: +643 | ouse Ave
rch
3 379440 | 2 | Locatio | on: | | | | | | ـ ا | | HA
esition | | D . | Α | UG | SER L | OG | | |--------------------------|---|---|--|---|----------------------------------|--|---|--------------------------|--|--|------------------------|--------------------------|-------------------------------|--------------------|--------------------------|------------------------------------|-----------------|-------------|----------------|-----------|---|-------------|-------------------------| | | | Rar | ngiora Du | ue Dilig | gence | | Towns | send Ro | | | lt, Rangi | | | R | efer t | o Site | Plan | ۱. | | | | | | | Job N | |)743 | 3 | | t Date
sh Dat | | -12-18
-12-18 | Grou | | el (r
.70 | n LINZ): | Co | | nates (1
,566,7 | | | | 391 | .1 | | H | A21 | | | Client
We | | Deve | elopmen | ts Ltd | | | | 1 | Hole
0.55 | | th: | | | | | | | | | | Sheet: 1 | of 1 | | | 07.12 Elevation | Depth (m) | Geological Unit | | r to sepa | arate Ge | eotechni | cription
ical and Ge
her informa | | - | Legend | Soil Shea
(k | (Pa) | | | | etrome
50 mn | | Groundwater | Soil Moisture | Samples | Tes | sts | Instrument/
Backfill | | +21.70 | 0.20 | (TOP SOIL) | SILT, tra
soft"; mc
(TOPSO | ist; low | organic
plasticit | s; dark l | brown. "Ve
nics, rootlet | ry soft to
s. | <u>1/2</u>
1/2 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

 | |

 | ,
 |

 | 9 | | | | ES0.1 NOV | No. 1
1, 0, 1,
1, 1, 2,
1, 2, 4,
3, 3, 5,
7, 5, 3,
3, 2, 2,
1, 2 | | | | - | | (FILL) | gravel; g
Firm to s | rey with
tiff; mois
, fibrous | orange
st; low p
; gravel, | and yell | sand, organ
lowish-brow
r; sand, fine
medium, s | wn mottlir
e to mediu | ng. × aum; aum | ×
×
× | | | | | | | | | | | | | | | +21.15 | -
0.55 | | 0.45m G | rades to | gravelly | y; wet to | saturated | | <u>x</u> -
x- | <u>×</u> <u>×</u> | | | | | | | | | | ES0.5 | | | | | FZ 1.15 | . 0.55 | | Gravel g | | edium to | o coarse | e. | | | | | İ | i | \ | <u> </u> | Ì | | | | NOV | | | | | - | -1 | | | | | | | | | | | | | | |

 | | | | | No. 2
2, 7, 3,
4, 7, 4,
3, 2, 3,
4 | | - | | | - | | | | | | | | | | | | | | |

 | | • | | | V | | | | _ | anatior | | meter - | | • • | mall Die | sturbed Sar | mple | | | WATER | | | | | | marks | | | I " | | | NDC | | b
P
Y S
Ir
V | lows/50
ermeab
chmidt
isitu Vai
=Peak,
70sturé | mm
ility T
Hamr
ne Sh
R=Re
able to | est
mer
lear Streng
esidual,
o penetrate | e | | arge Dis
I100 Und
Vater St
Vater Ri | sturbed Sar
sturbed Sar
disturbed S
rike (1st, 2r
se (1st, 2nd
e (minutes) | mple
Sample
and) | HOLE | Slow
Rapi
E TE | Seep (dd Inflow (| epth)
(depth
ED DU |)
JE T <u>O:</u> | _ | ine e | and s | ubject
ength | to so | urvey
s for | confir | ns based on ha
mation.
ive soil layers a
ated in quotatio | are based o | | | satur | ated | | ; W = wet; | | ontroc | tor: | | | Га | arget | depth X | | | Colla | pse | | | | | | Loggical Ex- | Charles | | | All di | | ons
le 1: | in metre
10 | s C | ontrac | iOl". | | | | | | Plant U
Auge | | | | | | | | | Logged by:
RBW | Checke | | | Projec | | and Ge | ANTS cologists | Riley Cons
22 Moorhouse A
Christchurch
Fel: +643 3794
Fax: +643 379 | Ave
4402
4403 | Location | | South F | Belt, Rangio | ora | | position: | | AU | JGI | ER LO | OG
lo.: | | |-------------------|--------------------|--|-------------------------------------|---|--|---|--------------------------|---------------------------|--------------|-----------------------------------|---------------------------------------|---|--|--|--|---|-----------------------------------|-------------| | Job N | o.: |)743 | | Start Da | ate: 21 | -12-18 | 1 | d Level | (m LINZ): | Co-Ordin | ates (Nz | ZTM2000) |): | | | HA | A22 | | | Client
We | : | | elopment | | Jale. Z | 1-12-10 | | 19.5
Hole De
1.10 r | epth: | E1 | ,500,053 | 3.5 N 5,2 | 03,321 | .4 | ; | Sheet: | of 1 | | |
(m LINZ) | Depth (m) | Geological Unit | | Geologi
to separate
formation sh | Geotechi | nical and Ge | | Legend | (kl | r Strength
Pa) | (blov | Penetromete
vs / 50 mm)
6 9 12 | Sround | Soil Moisture | Samples | Tes | sts | Instrument/ | | | | (TOPSOIL) | to firm"; r | e clay, organoist; low pla
edium, subro | asticity; oi
ounded, gi | ganics, root
reywacke (T | tlets; grave
'OPSOIL) | | | | * | | | ES NO | 0.1
V | No. 1 1, 0, 2, 1, 2, 1, 2, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1 | | | | 9.20 | 0.30 | | with oran
moist; lov
to mediu | | wish-brow
sand, fine
ed to rour | n mottling. | "Firm"; | ×o× | | | | | | | | | | 363636 | | - | | moist; low plasticity; sand, fine to me to medium, subrounded to rounded MEMBER FORMATION). \[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | nics, fibrous
DHURST ME | s to
EMBER, | ery | Δ × | | | |

 | ES NO | 0.5
V | ~ | V= 38
R= 10 | | | 8.40 | -1
<u>1.10</u> | | | ades to incluinor fine gra | | to some sa | nd, and | | | | · · · · · · · · · · · · · · · · · · · | | om

 | | | No. 2
3, 9, 7,
6, 7, 8,
9, 10,
16, 11 | | | | | - | | | | ### Total Property of the Control | | | | \ | | | | | | | | | | | <u> </u> | anation | | | | 0 | | | GROUN | NDWATER | | | Rem | | | | | | _ | | bl
P
Soil K | =Peak,
Moisturé | mm
ility T
Hamr
ne Sh
R=Re
able to | est
ner
ear Streng | <u>1</u> | Large Di
U100 Ur
Water S
Water R | isturbed Sar
isturbed Sar
ndisturbed S
trike (1st, 2nd
tise (1st, 2nd
ne (minutes) | mple
Sample
and) | Slo
X Ra
HOLE 1 | | epth)
depth 0.6 m
D DUE TO: |)
Collaps | and sul
2. Strer
shear v
cohesiv
Scala to | oject to s
ngth term
ane test
ve soil str | urvey on
s for co
where a
rength to | onfirma
hesive
availab
erms a | s based on ha
ation.
e soil layers a
ble. Where no
are based on
ed in quotatio | re based of shear van correlation | n
e, | | satura | nensi | | in metres | 10 (| actor: | | | | Rig/Pl | ant Used: | | | | | L | ogged by: | Checke | | | Projec | | | ANTS ologists | Riley Cons
22 Moorhouse A
Christchurch
Tel: +643 3794
Fax: +643 379 | Ave
1402
14403 | Location | | d10 | | M4 D | | | | Hole | pos | ition: | | | ΑI | UG | ER L | OG
No.: | | |--------------------|--|--|--|---|--|--|---------------------------------------|--|--|---|--|------------|---------------------------------------|------------------|---|---|--|-------------------------------|------------------------------|---|---|---|----------------------| | Job N | O.: | Ran
0743 | | Start Da | ate: | 21-12-18
21-12-18 | | nd Leve | el (ı | m LINZ | <u> </u> | Co-Ord | | s (NZ | TM | | : | | | | Н | A23 | | | Clien | t: | | elopment | | лаце. | 21-12-10 | | Hole 1 | | oth: | | E | 1,56 | 6,746 | .4 | N 5,2 | 03,3 | 00. | 2 | | Sheet: 1 | of 1 | | | Elevation (m LINZ) | Depth (m) | Geological Unit | | r to separate | Geote | escription
echnical and Ge | | 7000 | Legend | | (kP | Strengtha) | וו | Scala F
(blow | s / 50 |) mm) | er
15 | Groundwater | Soil Moisture | Samples | Тє | ests | Instrument/ | | 20.25 | -
0.25 | (TOPSOIL) | 0.20m G SILT, mir gravel; gr "Soft to fi organics | rades to 'soft nor to some cey with oran, rm; moist; lo fibrous; grav | t to very
clay, tra
ge and
w plas
vel, sul | ark brown. "Ve
rs, rootlets. (TC
y soft'.
ace sand, organ
y yellowish-brov
ticity; sand, fin-
brounded to su
PRINGSTON Fr | nics and wn mottline to medibangular. | \(\frac{1}{\structure} \) \fracture \) \(\frac{1}{\structure} \) \(\frac{1}{\structure} \ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | 130 200 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | 9 12 | 15 | | E 6 | ES0.1 \NOV | No. 1
0, 0, 1,
0, 1, 2,
1, 1, 2,
1, 1, 1,
1, 1, 1,
1, 3, 4,
5, 4 | | | | 19.70 | - 0.80 | (YALDHURST MEMBER, SPRINGSTON FORMATION) | | rades to clay
inor orange r | • | | | × × × × × × × × × × × × × × × × × × × | × × × × × × × × × × × × × × × × × × × |

 |
 -
 -
 -
 -
 -
 -
 - | | | | | | | | E | ES0.5
NOV | | V= 112
R= 36 | | | | -1
- | | ЕОН @ (| 0.80 m | | | | | | | | | | | | 1.00
1.00
1.00
1.1.1.1.1.1.1.1.1.1.1.1.1 | • | | | | No. 2
12, 14,
14 | | | | | - | ▼ Soil OD = co | =Peak,
Moisture
Iry; M =
ated | metror
mm
Hamm
Hamm
ne Sh
R=Re
able to | est
ner
ear Streng | S = | U100
Wate
Wate
Rise | Il Disturbed Sar
e Disturbed Sar
I Undisturbed S
er Strike (1st, 2)
er Rise (1st, 2n
Time (minutes) | mple
Sample
and) | X S S S S S S S S S S S S S S S S S S S | Not
Slow
Rapi
E TE | t depth | ntere
(dep
/ (de
XTEI | oth) | С | ollaps | 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | and sub
2. Strer
shear v
cohesiv | dinate
oject to
ogth te
ane te
ve soil | o su
erms
est w
stre | rvey
for
here
ength | confirm
cohesive
availa
terms
dindica | s based on hation. we soil layers ble. Where nare based or ted in quotati | are based
to shear van correlatio
on marks. | on
ane,
on wit | | 2 | | ULTANT | S Tel | Moorhoristchur | onsu
ouse Av
och
37944
3 37944 | e
02 | S | | | | | | | | | | | 11 | NSPEC | ;TI | 101 | N PIT | LOG | |---------------------------------------|--|-------------|----------------------------|----------------|--|---------|--------|----------------|--|--|--------------------------------------|---------------------|----------------------------|--|------------------------------|--|---------------------------|-----------------------------|---|-----------------|---------|--------------------------------------|---------------------------| | Proje | | Rangio | | | | | | Locat | ion:
send Ro | 1/50 | uth | Relt | Rano | niora | | | | | osition:
to Site Plan. | | | ı | No.: | | Job N | No.: |)743 | | Start | t Date
sh Da | e: (| 08-01 | 1-19 | Grou | nd L | | el (LI | ` | _ | | | (NZ | TM2 | (2000):
N 5,203,530 | n 6 | | F | IP1 | | Clien | nt: | evelopm | | | ,,, <u>D</u> | | | | | Нс | | Depth | 1: | | | 1,50 | 10,21 | 5.1 | 14 3,203,330 | 0.0 | | Sheet: | of 1 | |
Elevation (m LINZ) | Depth (m) | (re | G
fer to se
Informat | oarate | gical
Geote | echnic | al and | d Geolo | gical
n) | | Legend | Weathering | | ld Stre | ٠ | rc | (type | , orien | escription
tation, spacing,
sistence aperture,
ing etc) | Groundwater | Samples | | Tests | | +26.80 | _ | SILT, mi | nor to so | ome cl | ay, tra | ce sai | rootle | ey with moist; | | , <u>\</u> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | × × | ₩8€€ | 55 5/5 | ###################################### | ¥ø%₩ | | | | | | HP1-0 | .25-0.5 | | | +26.50 | EOH @ 0.50 m | | | | | | | | | × | <u>×</u>
× | | | | | | | | | | | | -
- | | os.st Froduced by ginn i Frotessional | -1 | -
- | | 807 | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | SKETCH/PHOTOS: | | | | | | | | - | - | _
- +
-
- | -

 -
 - | - | - -
- -
- - | |

 |

 |

 | SITE MAP | | | | -(N) | | | | | | | | | | | - + - -
- - -
- - -
- + - -
- - -
- - - | | -
-
-
-
-
- | -
 -
 -
 - | - | - | | | -
 -
 -
 -
 - | _ | | | | | 0 m
100 m
200 m | | | - + | - + - +
 | - | <u> </u> | + | +
 | + | | - + - |

 | _ | -
 | GROU" |

 -
 - |

 | | -
- - | <u>_</u> | 1 | | | | 1:10,000 | | | Shoring/Support: Stability: O.3m A D A D C C SAMPLES AND TESTING Grab Sample (Disturbed) Sulk Sample (Disturbed) Scala Penetrometer (blows/50 Insitu Vane Shear Strength (kl P: Peak; R: Residual; UTP: Unable to penetrate Lab Testing: PSD: particle size OMC: optimum moisture cont max dry density; Disp: dispers | | | | | | | | ws/50mm
ws/50mm
gth (kPa):
e
le size dis
cont.; ME |) [
 | | None Slow Rapid TER | Inflow
MINAT
t depth | | Vater S
Vater I
īme (n | Rise
ninute:
se | 1. st 2. la 3. 4. | Coolurvey
Hand
b test | arks rdinates and elevat confirmation. d pit located betwee ing, ngth terms based o ples may contain tr | en HA
n stre | 1 and H | IA7, undertaken
sting in nearby H | for soil sampling and | | All c | dimensi | ons in m | netres | 1 | ontrac | | ty, L | 210p. ul | Spoidivity | 1 - | | | | Plant
d Exc | | | | | | | | Logged by: | Checked by:
CFC | | 2 | | ULTAN and Geolog | Υ 2:
ΓS Τ | 2 Moori
hristchi
el: +64 | Consumouse Available Avail | ve
-02 | ts | | | | | | | | | | | 11 | NSPEC |
 T | 101 | N PIT | LOG | |--|---|------------------|--------------|--------------------------------|--|-----------|---------|-------------------------------|---|----------|---|---------------------|----------------------------|----------------|-----------------|--------------------------|-------------------------|-------------------------|---|----------------|----------|--------------------------------------|--------------------------| | Proje | | Rangio | ora Due | e Dili | gence | • | | Locat | ion:
send R | d/Sc | outh | Belt | Rand | niora | | | | | osition:
to Site Plan. | | | I | No.: | | Job N | lo.: | 743 | | Sta | rt Date | e: (| 08-0 | 1-19 | | ınd l | | el (LI | NZ): | _ | | | (NZ | TM2 | 2000):
N 5,203,42 | | | H | IP2 | | Clien | | evelopr | nents l | | | | | | | Н | | Depth | 1: | | | 1,00 | 70,10 | 7.0 | 14 0,200,42 | | | Sheet: | of 1 | | Elevation (m LINZ) | Depth (m) | (r | efer to se | eparat | ogical
te Geote
sheet fo | echnic | cal and | d Geolo | ogical
n) | | Legend | Weathering | | eld Stre | Ĭ | rc | (type | , orien | rescription tation, spacing, rsistence aperture, ling etc) | Groundwater | Samples | | Tests | | +26.50 | 0.20 | SILT, m | ninor to s | some (| clay, tra | ace sa | nd; gr | ey with | stiff"; dry
SOIL)
orange
low
MEMBEF | <u>√</u> | × × × × × | #6f\$a | | | | | | | | | HP1-0 | .25-0.5 | | | +26.20
https://doi.org/10.1000 | 20 0.50 EOH @ 0.50 m | | | | | | | | | | × | | | | | | | | | | | | | | SKE | TCH/PP | HOTOS | | | | | | | | | - + - + - + - + - + - + - + - + - + - + | | | | | | | | SITE MAP | | | | 0 m 100 m 200 m 1:10,000 | | Shorir
Stabili | - | | | • 550 | Grab | Samp | le (Dis | TESTIN
sturbed
sturbed) |) | | H | None | GROU! | 1 | Vater : | | 1.
sı | Coo | arks
rdinates and elevat
confirmation. | | | | S and subject to | | | C Lab Testing, PSD. particle size of OMC: optimum moisture cont.; I max dry density; Disp: dispersivi | | | | | | | | | st. | X | Rapid
<u>TER</u> | Inflow
MINAT
t depth | | Collap
Machi | ninutes
se
ne limi | s) 2.
te
3.
4. | Hand
sting.
Stree | d pit located adjace | on stre | ngth tes | sting in nearby H
from above tops | A/BH.
oil. | | All d | All dimensions in metres Scale 1:10 Contractor: | | | | | | | | | | | | | Plant
d Exc | | | | | | | | Logged by:
AvD | Checked by:
CFC | | 2 | | ULTAN | Y 22
CI
TS Te | 2 Moort
hristchu
el: +64 | Consumouse Avarch
3 37944 | /e
02 | S | | | | | | | | | | | 11 | NSPEC | T ; | 101 | N PIT | LOG | |---|--|---------|---------------------|---------------------------------------|------------------------------|----------|---------|----------------|---|-------------|---------------|-------------------------|--------------|--------|--|-----------------|-------------------|---|--|-------------|---------|-------------------|---| | Proje | | Rangio | ora Due | e Dilio | gence | <u> </u> | | Locati
Town | on:
send Rd | l/Sou | th B | elt F | Rang | iora | | | | | osition:
to Site Plan. | | | ١ | No.: | | Job N | lo.: | 743 | | Star | rt Dat | e: (| 0-80 | 1-19 | Grour | nd Le | | (LIN | <u> </u> | | | | (NZ | ГМ2 | 2000):
N 5,203,51 |
73 | | Н | IP3 | | Clien | | evelopn | nents L | | | | | | | Hole | | epth: | | | | 1,00 | .0,00 | 71.0 | 110,200,01 | | | Sheet: | of 1 | | Elevation (m LINZ) | Depth (m) | (re | efer to se | eparate | | echnic | al and | d Geolo | | Legend | b | Weathering | | d Stre | Ŭ | ro | (type, | , orien | escription
tation, spacing,
sistence aperture,
ing etc) | Groundwater | Samples | | Tests | | +24.40 | 0.20 | SILT, m | inor to s | ome c | clay, tra | ace sa | nd; gro | ey with | stiff"; dry
SOIL)
orange
ow
MEMBER, | ×
*
• | | 34565 | 5/5/5/1 | 75 | ₩ % ₩ | | | | | | HP1-0 | .25-0.5 | | | + 1 TOUR US | EOH @ 0.50 m - 1 - 1 - 1 - 1 | | | | | | | | | x x | <u> </u> | | | | | | | | | | | | - | | SKE | TCH/PP | HOTOS | | - - - - - - - - - - | | | | | | | | |
 | | | | | | SITE MAP | | | | 0 m 100 m 200 m 1:10,000 | | | Lab Testing. P3D. particle size OMC: optimum moisture cont.; | | | | | | | | | . L | SI
Ra
: | one
ow Se
apid Ir | eep
nflow | | Vater S
Vater F
ime (n
<u>JE TO</u>
Collap | Rise
ninutes | 1. st 2. te 3. 4. | Cool
Irvey
Hand
sting
Strei | arks rdinates and elevat confirmation. d pit located adjace gth terms based of ples may contain to | ent to I | BH2, un | dertaken for soil | S and subject to
sampling and lab
A/BH. | | All d | | | | | | | | | spersivity | | | | | Plant | Used | l: | | | | | | Logged by: | Checked by:
CFC | | • | Riley Consultants 22 Moorhouse Ave Christohurch Tel: +643 3794402 Fax: +643 3794403 Project: Summerset Rangiora Due Diligence Ob No.: Start Date: 08-01-19 | | | | | | | | | | 1/50 | uth | Rel | t P | anci | iore | | | | lole p | NSPEC | T | O | | LOG | | | |------------------------|--|--|------------------------------------|-------------------------------------|--|-------------------------|------------------------------------|--------------------------|----------------------|-----------------------------------|----------------|-----------------------|--------------------------|--|----------------------------|-------------|-----------------|---|----------------|---------------|-----------------------|------------------------|--|-----------------|---------|--------|--------------| | Job N | lo.: | 0743 | | a DC | St | art | Date | e: | | 01-1 | 9 | Groun | nd L | .eve | el (L | | <u> </u> | | | | s (N | IZTM: | 2000): | | | Н | IP4 | | Clien | | 0743 |) | | FI | nisr | ı Da | ile: | 08- | 01-1 | 9 | | | | 2m
Depi | th: | | | t | = 1, | 066, | 660.3 | 8 N 5,203,61 | 1.3 | | Sheet: | | | | hom D | evel | opm | ents | Ltd | | | | | | | | 0 | .50 | | | | | | | | | | | | 1 | of 1 | | the Elevation (m LINZ) | Depth (m) | | | fer to s | separ | ate (| Geote | echni | ical a | | | | | Legend | RS
CW
HW: Weathering | | | d Stre | • | | (t | ype, orie
hness, pe | Description Intation, spacing, ersistence aperture, lling etc) | Groundwater | Samples | | Tests | | | - | SIL [*]
to m | Γ, traα
noist; | ce cla
low p | y, org
lastic | ganic
city; o | s; da
orgar | ark br
nics, | rown | . "Firn
ets. (1 | n to s
FOPS | tiff"; dry
OIL) | 以
以
以 | 71 | | | | | | | | | | | | | | | +21.00 | 0.20 | | | | | | | | | | | | 71 | <u>\ \ </u> | | | | | | | | | | | | | | | | - | SIL [*]
and
plas
SPF | T, min
yello
sticity
RING | nor
to
owish-
r; sand
STON | some
browing
d, fine | e cla
n mo
e to n | y, tra
ottlino
nedic
TION | ice sa
g. Ve
um. (| and;
ry st
YAL | grey v
iff; mo
DHUF | with coist; Ic | range
w
IEMBER, | × | × | | | | | | | | | | | | | | | | - | | | | | | | | *
*
* | ×
×
× | | | | | | | | | | | HP1-0 | 0.25-0.5 | | | | | | | +20.70 | 0.50 | | 1 @ f | 0.50 n | n | | | | | | | | × | <u>×</u> | +++ | | +++ | |
 | | | | | | | | | | | - | | | 0.0011 | _ | - | _ | - 1 | SKE | ГСН/Р | HOT | os: | | | | | <u> </u> | - | 1 | - | | $\frac{\perp}{\uparrow}$ | _ | | | H | | T | | _ | | SITE MAP | | | | | | | <u> </u> | | _I
_! | _
_
! | _ | _ | L _

 |

 - | <u> </u> | - L - | _

 | <u> </u> | . <u> </u> | _ | |

 - | 1
1
1 | <u> </u> _ | .

- - | ⊥

 | L - |

 | | | | | | | _ _ | | _
_ | - T | | _ <u> </u>
_
_ | - I | . –

 - – |
 | <u> </u> | - - | -
 - | | - - |

 | | , | , -

 - | - | | -

 - | - |

 | | | | | \leftarrow | | - | <u> </u> | | - i | - —İ- | - 🕂 | _ į |
 | <u> </u> | <u> </u> | - - - | <u> </u> | <u> </u> | . <u></u> . | _ i | |
 | <u> </u> | <u> </u> | i | <u> </u> | <u> </u> - | <u> </u> | | | | | | | | + | - + | - +
- | i- | - +
 | - t | - | — -
 | +- | - |

 | + | | - †
 | | — -
 | + —
 | <u>+</u> - | | + —
 | |
 | | | | | 0 m | | | T = 1 | | _ † | - — - | _ _ | _ i |
 -
 - |
 | T - | - | <u> </u> | T - -
+ - - | | _ T | | | Ţ —
↓ _ | <u>+</u> - |
 | Ţ — | <u></u> |]
 | | | | | | | - | +- | - + | - <u>†</u> | | - + | - |
 | | <u> </u> | - | | + | - | - † | |
 | | +- | ļ |
 - | <u> </u> - | | | | | | 100 m | | _ | + | | <u> </u> | [- | - | _ <u> </u> | <u>L</u> _ | J

 | <u> </u> | - - | <u> </u> _ | | . | _ <u> </u>
 | |

 | <u> </u> | <u> </u> |
 | <u> </u> _ | <u> </u> | <u> </u> | | | | | 200 m | | | + - | | _ + | | | _ | | | <u> </u> | | 1 | + - F | - | | | | 101.15 | H - |
 | _ | | | | | | | 1:10,00 | | Shorin
Stabili | g/Suppo
t <u>y:</u> | ort: | | | | • (| 3rab | Sam | ple (| <u>D TES</u>
Distur
Disturl | bed) | ! | | X | Non | е | | 1 \ | Vater | | | 1. Coo | narks
ordinates and eleva
ordirmation. | | | | • | | | Scala Penetrometer (blows/50 Insitu Vane Shear Strength (kf P: Peak; R: Residual; UTP: Unable to penetrate | | | | | | | | | , |) <u> </u> | \exists | | v See
id Inf | | | Vater
īme (| | - 1 | 2. Har | nd pit located adjace | | | | | | | | Р I
L - | | | | | | | | | | . , | - | | | | | ON D | JE TO | | | 4. Sar | nples may contain t | race n | naterial | from above tops | oil. | | | | | - ‡ | |
 | 10.3 | | C | OMC: | optii | mum | mois | ture o | | | X | Targ
Refu | | epth | Н | Colla
Mach | | mit | | | | | | | | | C max dry density; Disp: dispersiv | | | | | | | persivity | <u> </u> L | | , well | | Rin/F | Plant | Use | | | | | | | Logged by: | Checked b | | | | | | , ui U | All dimensions in metres Scale 1:10 | | | | | | | | | | | | | | Exc | | | | | | | | AvD | CFC | | | | | • | Riley Consultants 22 Moorhouse Ave Christchurch Tei: +643 3794402 Fax: +643 3794403 Project: Summerset Rangiora Due Diligence ob No.: Start Date: 08-01-19 | | | | | | | | | | 1/0- | . ,4L | . Pal | + - | one | ioro | | | | lole p | NSPEC | T | O | r | LOG | | |--------------------|--|-------------------------------|---|-------------------------------------|--------------------------|---------------------------------------|---------------------------|------------------------|--------------------------|---------------------------|---------------------------------------|----------------|-------------|---------------------------|---------------|-------------------|-----------------|-------------|------------------------|--------------------------|---|--|----------------------|--|------------------|------------------| | Job N | lo.: | | giora | - 1 | Start | Date | e : | | 01-1 | 9 | Grou | nd L | eve | el (L | | | | | | s (N | NZTM | 2000): | | | Н | P5 | | Clien | | 0743 | | | Finis | h Da | ate: | 08- | 01-1 | 9 | | _ | | 4m
Dep | th: | | | | E 1, | 566 | ,694.2 | 2 N 5,203,36 | 1.3 | | Sheet: | | | | hom D | evelo | pmer | ts Lt | d | | | | | | | | .50 | | | | | | | | | | | | 1 | of 1 | | Elevation (m LINZ) | Depth (m) | | (refer
Inf | | arate | | echni | cal a | and Ge | | | | Legend | RS
CW
HW Weathering | | | d Stre | • | | (1 | type, orie | Description
entation, spacing,
ersistence aperture,
illing etc) | Groundwater | Samples | | Гests | | | - | SILT
to m | , trace
oist; lo | clay, d
w plas | organi
sticity; | ics; da
orgar | ark br
nics, | own. | . "Firm
ets. (T | to st | tiff"; dry
OIL) | 7 7 7 | <u>\\</u> | | | | | | | | | | | | | | | +22.20 | 0.20 | | | | | | | | | | | 7 | γ
71 | | | | | | | | | | | | | | | | - | SILT
and y
plast
SPR | , minoi
yellowi
icity; s
INGST | to so
sh-bro
and, fi
ON FO | me classes me to
ORMA | ay, tra
iottling
medii
iTION | ace sa
g. Ve
um. (' | and;
ry sti
YAL[| grey w
ff; mo
DHUR | vith o
ist; lo
ST M | range
w
EMBER | ×.
×.
×. | × | | | | | | | | | | | | | | | | - | | | | | | | | | | | *
*
* | ×
×
× | | | | | | | | | | | HP1-0 | 0.25-0.5 | | | +21.90 | 0.50 | | @ 0.5 | 0 m | | | | | | | | × | | | | | | | \vdash | | | | 1 | | | | | | - | _ | - | -1 | SKE | ГСН/Р | HOTO |)S. | | | T | 1 | T | | Т | | <u> </u> | 4 | | | | | T | <u> </u> | - | | SITE MAP | | | | | | | <u> </u> | | _ <u> </u> _
 | -
! | <u> </u> | <u> </u> _ | - | <u> </u> | - <u>L</u> - | <u> </u> | <u> </u> | - |
! | L _ |
 | <u> </u> | . <u> </u> _ | -l
! | <u> </u> | L - | <u> </u> | 0 | | | | | | - - - | + -
 -
 - | - + -
_ | - + -
- <u> </u>
- - - | -
- | + —
!
- — | + - | - — -
-
- | + -

 - | · - - | —

 | +
_
 | · | _ | |

 | † –
<u> </u> _ | + -
 | -
-
 | + —
<u> </u>
- — | <u> </u> | | | | | | \forall | | - | - | | - - | - | <u> </u> | <u> </u> | ļ | <u> </u> | -
 - | - | + | | _ | <u> </u> |
 | <u> </u> | <u> </u> |
- | <u> </u> | <u> </u> | -
 | | | | | | | | + | | - | - | | - | | +- | - | - | + | | - { | - |
 | | +- | - | | - | - | | | | | | | - | †-; | | - † - | | †- | <u>+</u> - | ¦ | <u> </u> | - | ¦- | † | | - ¦ | <u> </u> | <u> </u> | <u> </u> | <u> </u> | ¦ | <u> </u> | <u> </u> | - | | | | | 0 m | | | + - | - - | - - | -

- | † —

 – | +- | -, — -

- — - | + -

+ - |
 | 1
1 | + | | - †
- † | | ,— -

 | -

 - | +- | -

- | + -

+ - | | -,

- | | | | | 100 m | | - | · | - i- | _ <u> </u> | | <u> </u> | <u> </u> | ļ | <u> </u> _ | <u> </u> | <u> </u> _ | <u> </u> | - 극- | _ į | <u> </u> | <u> </u>
 | <u> </u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> - | - | | | | | | | - | + | | - ‡ - | - | <u> </u> | <u>-</u> – | - | <u>-</u>
 - | - - | -

 | <u> </u> | | - | -
-
 |
 | <u> </u> | <u> </u> | - | <u>;</u>
 - | <u>-</u> - | -
 | | | | | 200 m
1:10,00 | | Shorin
Stabili | g/Suppo | ort: | | | | | | | D TES
Disturb | | | Īſ | Х | Non | GR
e | OUN | IDWA | | | | | narks
ordinates and eleva | tions h | ased o | n hand hand GPS | and subject to | | | Bulk Sample (Disturbed) Scala Penetrometer (blows/50 Insitu Vane Shear Strength (kf P: Peak; R: Residual; UTP: Unable to penetrate | | | | | | | | | s/50mm | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | | | v See | | ₹ · | Nater
Nater | Rise | , | surve
2. Ha
testin | y confirmation.
nd pit located adjace
a. | ent to E | 3H5, un | dertaken for soil | sampling and lab | | | | | | | | | | | | | | | | | id Inf | | _ | Time (
UE TO | | ites) | 3. Str
4. Sa | ength terms based on
ples may contain t | n stre
race n | ngth tes
naterial | sting in nearby HA
from above topso | VBH.
oil. | | | ρİ | Î | | I E (|
ე.ჭm | | Lab T | estin | <u>g:</u> PS | SD: pa | ırticle | size dis | | X | Targ | | | | Colla | | | | | | | | | | <u> </u> | <u>I</u> | | _' | <u> </u> | | | | | | | ont.; MD
persivity | D: [| | Refu | ısal | | | Mach | nine li | imit | | | | | | | | All d | C max dry density; Disp: dispers All dimensions in metres Scale 1:10 Contractor: | | | | | | | | | | | | | Plant
d Exc | Use | | | | | | | Logged by:
AvD | Checked b | | | | | C | | | | EY
TANTS
Geologists | Riley Consulta
22 Moorhouse Ave
Christchurch
Tel: +643 3794402
Fax: +643 3794403 | nts | | | | | | | | DRILL | НО | LE L | _0 | G | |--|---|---|---|--|--|---------------------|---|--|--|--|---|---------------------|--------------------------------|---|--|--|--|---| | | oject
umm | | et Ra | angiora D | ue Diligence | - 1 | catio
wns | | l/South Belt, | Rangio | ra | | Hole po
Refer t | sition:
o Site Plan. | | | | 0.: | | Jo | b No | | 074 | 3 | Start Date:
Finish Date: | 18-12-1
19-12-1 | | Groui | nd Level (m
23.70 | LINZ): | Со | | nates (NZTN
1,566,522 | //2000) :
N 5,203,465 | | | В | H1 | | | lient:
/elhc | |)eve | lopments | Ltd | | | | Hole Depth
15.20 m |): | An | gle fro | om Horiz.: | Direction:
-90° NZTM2 | 2000 | Sheet: | 1 (| of 2 | | Туре | Run | Fluid & Water | Piezometer | (refer to | ological Descript
separate Geotechni
ical Information she
urther information) | cal and | Legend | Weathering | Field Strength | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Desci
(type, orientation, s
roughness, persis
aperture,
infilling etc) | pacing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | | 0.00 | | | "Very sof
organics
CLAY; liq
mottling.
plastic (\
SPRING: | ace organics; dark to the content of | orown. stic; // | 0 | ###################################### |
0.83
0.83
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84 | +23.35

 +23.35

 +22.80 | -
-
-
-
-
-
1 | | 000 | | | 118 | | | | | 1.52 | | | mottled of moist; gr subangu medium. Fine to mand silt, "Dense"; | rey and brown. Der avel, subrounded to ar, grewacke; sand | nse; | 0 | | | +21.86
+21.50 | -
-2 | | | | | 102 | | SPT 1.52 m
10, 6, 8, 10,
11, 14; N = 43 | | SONIC GEOPROBE 8140LC (150Hz) | 3.04 | | | some sill
"Dense to
and sand | e to coarse GRAVE
, minor cobbles; bro
o very dense"; mois
, as above. | own. or t; gravel v | 000000000000000000000000000000000000000 | | | : 1 | -
-3
-
-
-
-
-
-
-
-
-
- | | | | | 105 | | SPT 3.04 m
7, 9, 12, 10,
11, 14; N = 47 | | SONIC GEO | 4.56 | <u> </u> | | 4.50m G | ades to saturated. | | | | | | -
-
-
-
-
-
-
-
-
-
-
-
- | | | | | 118 () | | SPT 4.56 m
7, 8, 10, 12,
14, 14; N = 50 | | | 6.08 | | | | | | | | | | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | 105 | | SPT 6.08 m
11, 14, 16, 16,
14, 14; N = 60 | | | 7.60 | | | | | 0.4 | 0 0 | | | | -
-
-
-
- | | | | | 102 | | SPT 7.60 m
35, 25; N > 50 | | Relation Relations Relatio | athered
athered
ative R
ak, mod
R - Tota
R - Soli
D - Roo | s Weat
(SW),
(HW),
(cock St
derately
al Core
d Core
ck Qua
defect | rength
/ stror
Reco
Reco
lity Des | rately weather letely weather - extremely was, strong, very every exignation layed as Dip/ | | Water | onite
t
on Test
Strike | t: Flow Type (1st, 2nd . | Drill arisings
or collapsed hole
Filter material
be/Adopted Value
) | | | | | | hand-he
confirm
2. No confirm
3. SPT
cone us
4. Water | rdinates and
eld GPS an
nation.
core loss. Re
y exceeds re
hammer eff
sed unless i | d sub
ecover
un ler
ficiend
indica
ring d | ations based or
ject to survey
red core sampl
19th by 5-10%.
cy 93.8%; solid
ted on log.
Irilling influence | | A | ll dir | | sions | s in metre | Contractor | | | | Core
Boxes: 0 | Rig/Pl | | | (McMillan) | Driller: | | Logged | by: | Checked by
CFC | | | 2 | | | EY
TANTS
Geologists | 22 Mo
Christ
Tel: + | y Consultants
corhouse Ave
church
643 3794402
+643 3794403 | | | | | | | | DRILL | НС | LE I | _0 | G | |--|---|--|---|---|--|--|---|--------------------------|--|-----------------|---|---------------------|--------------------------------|--|--|---|--|---| | | roje | | ent R | andiora I | | iligence | Locati | | d/South Belt, | Rangio | nra | | | osition:
to Site Plan. | | | N | 0.: | | _ | | lo.: | 17074 | | St | _ | 3-12-18 | _ | nd Level (m | | _ | | nates (NZT | M2000): | | | В | H1 | | | lien
Vell | nt: | | lopment | | mism Date. Te |)-12-10 | | 23.70
Hole Depth
15.20 m | 1: | An | | om Horiz.: | 2 N 5,203,465
Direction:
-90° NZTM2 | 2000 | Sheet: | | of 2 | | Type | Si B | Fluid & Water | Piezometer | (refer to
Geolo | separa | ral Description ate Geotechnical a formation sheet formation) | gend gend | Weathering | Field Strengt | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Descr
(type, orientation, s
roughness, persist
aperture,
infilling etc) | pacing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | | 7.6 | 60 | | some si | ine to coll, mind to very id, as a ued) | oarse GRAVEL,
or cobbles; brown
dense"; moist; gr
bove. | | . | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | -
-
-
-
-
-
-
- | | | | | 102 | | | | | 9.1 | 12 | | | | | | · | | | -10 | | | | | 100 | | SPT 9.12 m
10, 9, 10, 10,
10, 16; N = 46 | | GEOPROBE 8140LC (150Hz) | 10. | 64 | | | | | | . | | | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | 118 | | SPT 10.64 m
15, 27, 35,
25/65mm;
N > 50 | | SONIC GEOPRE | 12. | 16 | | | | — — — — — dium SAND;
Very dense; mois | × | · | | +11.54

 | - 12
- 12
 | | | | | 118 | | SPT 12.16 m
14, 20, 20, 26,
14/20 mm;
N > 50 | | | 13. | 68 | | some si | It, mind
ery dens | oarse GRAVEL,
or
cobbles; brown
se; moist; gravel a | and Q X X X X X X X X X X X X X X X X X X | > | | +10.02 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | 100 | | SPT 13.68 m
24, 22, 22, 28,
10/20 mm;
N > 50 | | - SS 54-7071 HO | | | | EOH @ | 15.20 ı | m | 0 /×
% &
8 | - | | +8.50 | -
-
-
-
-
-
-
-
-
-
- | | | | | | | SPT 15.20 m
30, 21, 25, 28,
7/15 mm;
N > 50 | | Ro | ck Ma | ass We | ions: | g: unweather | red (UW) | , slightly | Backfill: | D SA | Drill arisings | | | | | | 1.0 | | mark | | | we we we scale and a | ather
ather
ather
lative
ak, m
R - To
R - S
D - R
itude | ed (SV
ed (HV
ed (RV
Rock
noderat
otal Co
folid Co
Rock Qi
of defe | V), mode
V), comp
V)
Strength
ely stroit
ore Reco
ore Reco
uality De | erately weath n - extremely ng, strong, very overy sesignation layed as Dip | nered (M)
ered (CV
weak, ve
ery stron | W), highly
V), residually
ery weak, | Water Stri | st: Flow Ty ke (1st, 2nd | or collapsed hole Filter material pe/Adopted Value | | | | | | hand-h
confirm
2. No o
typicall
3. SPT
cone u
4. Wat | eld GPS ar
nation.
core loss. R
ly exceeds
hammer e
sed unless | ecove
run ler
fficien
indica
uring c | Irilling influence | | | | limer | | s in metr | res | Contractor:
McMillan Drill | - | | Core
Boxes: 0 | Rig/Pl
Geopr | | | (McMillan) | Driller: | I L | Logged
DDH | - 1 | Checked by: | | R | | | | E Y | 22 Moorho
Christchur
Tel: +643 | rch | ts | | | | | | | | DRILL | НО | LE I | _0 | G | |--|--|---|---|--|--|---|-------------------------------------|--------------------------------|---|---|--|---------------|---------------------|--------------------------------|--|--|--|--|---| | | oject
umm | | et Ra | angiora Di | ue Dilig | jence | | catio | | d/South Belt, | Rangio | ra | | Hole po | osition:
to Site Plan. | | | N | 0.: | | Jo | b No |).:
17 | 074 | 3 | | t Date:
sh Date: | 17-12-1
18-12-1 | 18
18 | Grou | nd Level (m
24.40 | LINZ): | Со- | | nates (NZTI
1,566,561 | M2000):
N 5,203,517 | | | В | H2 | | 1 - | ient:
/elhc | |)eve | lopments | Ltd | | | | | Hole Depth
15.20 m | I. | Ang | | om Horiz.: | Direction:
-90° NZTM2 | 2000 | Sheet: | | of 2 | | Туре | Run | Fluid & Water | Piezometer | (refer to s
Geologi | eparate (| Description Geotechnics mation sheeter commation) | al and | Legend | Weathering | Field Strengtl | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Descr
(type, orientation, s
roughness, persist
aperture,
infilling etc) | pacing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | | | 1 - | | SILT, min and orang plasticity SPRINGS | or clay; nge. "Soft" (YALDHU) TON FO to coan inor silt; oist; grav | orown. "Soft
ty (TOPSOII
mottled light
; moist; low
JRST MEM
RMATION)
— — —
see GRAVEL
brownish-g-
vel, subroun
acke; sand, | t grey | | 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± | A S S S S S S S S S S S S S S S S S S S | #24.20
 +24.20
 +23.70
 +23.70 | -1 | S | 500 | | | 0 | | SPT 1.52 m
7, 7, 8, 8, 9, 9;
N = 34 | | SONIC GEOPROBE 8140LC (150Hz) | | 1 | | | | very dense. | ced. | | | |

 | -3 | | | | | 0 | | SPT 3.04 m
10, 13, 15, 14,
15, 13; N = 57
SPT 4.56 m
8, 9, 14, 14,
12, 14; N = 54 | | Roonic GEOI | | | | | | | • | | | | | | | | | | 0 | | SPT 6.08 m
11, 20, 27, 23,
10/35mm;
N > 50 | | | | | | 7.92m - 9 | .12m Gra | ades to silty | /. | 0 V. | | | | -
-
- 8 | | | | | 0 | | 10, 27, 25, 25,
10/20 mm;
N > 50 | | Relation wear Relation wear Relation Re | thered
thered
ative R
k, mod
R - Tota
R - Soli
D - Roo | s Weat
(SW),
(HW),
(cock St
derately
al Core
d Core
ck Qua
defect | rength
/ stron
Reco
Reco
lity De
s displ | very
signation
layed as Dip/D | red (MW),
ed (CW), r
eak, very v
r strong | highly
residually | Backfi Ben Grod Luge Wate Wate | ill:
tonite
ut
on Tes | t: Flow Type (1st, 2nd (1st, 2nd) | Drill arisings
or collapsed hole
Filter material
pe/Adopted Value
)
) and Rise | | | | | | hand-h
confirm
2. No c
typicall
3. SPT
cone u:
4. Wate | rdinates an
eld GPS ar
nation.
ore loss. R
y exceeds i
hammer e
sed unless | ecove
run ler
fficien
indica
uring c | ations based on
ject to survey
red core sample
ogth by 5-10%.
cy 93.8%; solid
ated on log.
Irilling influence | | A | ll din | | sions
ale 1 | s in metre | | ontractor:
cMillan D | | | | Core
Boxes: 0 | Rig/Pla
Geopre | | | (McMillan) | Driller: | | Logged
AvD | - 1 | Checked by
CFC | | | | | | LY
TANTS | Riley Consultants 22 Moorhouse Ave Christchurch Tel: +643 3794402 Fax: +643 3794403 | | | | | | | | DRILL | НО | LE I | LO | G | |---|--
--|---|---|---|--------------|---|--|-----------------------------------|---|---------------------|--------------------------------|---|---|--|---|--| | | rojec | | et Ra | | e Diligence | Location | | d/South Belt, | Rangio | nra | | | osition:
to Site Plan. | | | N | 0.: | | - | ob No | o.: | 7074 | | _ | 12-18 | _ | arcedarr Bert,
and Level (m
24.40 | | 1 | | nates (NZT | | | | В | H2 | | | Client
Welh | : | | lopments | | | | Hole Depth
15.20 m | 1: | An | | om Horiz.: | Direction:
-90° NZTM20 | 000 | Sheet | | of 2 | | | | | | Geol | ogical Description | | | | $\overline{\top}_{\underline{a}}$ | | g | | • | | | | | | Tvpe | Run | Fluid & Water | Piezometer | Geologic | eparate Geotechnical ar
all Information sheet for
ther information) | pued Pier | Weathering | Field Strengt | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Descrip
(type, orientation, spe
roughness, persiste
aperture,
infilling etc) | acing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | | | | | | | 0, | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | S S S S S S S S S S S S S S S S S S S | | | 0, | 20 100 | | | | | | | | | | | trace to m
Dense; mo | to coarse GRAVEL,
inor silt; brownish-grey.
pist; gravel, subrounded
r, grewacke; sand, fine | to 0.0 | . | |
 | -
-
-
-
-
-
9 | | | | | 0 | | | | | | | | 10.04m - 1 | 0.64m Grades to silty. | | | | | -10 | | | | | 0 | | SPT 9.12 m
9, 12, 17, 20,
21, 5mm;
N > 50 | | E 8140LC (150Hz) | | | | | | | | |
 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | | 0 | | SPT 10.64 m
12, 20, 20, 27,
13/20 mm;
N > 50 | | 13:28 Produced by gin I Professional Sonic GEOPROBE 8140LC (159Hz) | | | | 12.16m Gi | ades to include trace c | 000 | | 111111 | | - 12
- 12
13 | | | | | 0 | | SPT 12.16 m
10, 9, 13, 17,
17, 13/45mm;
N > 50 | | 3-1 NZ LB 13:GLB LOG MLEY CHCH DH 170743 SS-KANGIOKA ALL LOGS.GFJ < CLTAMINGFIRS> ZZUJZUJZUJ 13:Z8 Produced by gin i Professional できたが、 高級の できた 1 ML LD 15:CH | | | | 14.60m - 1 | 5.20m Grades to silty. | | | | | - 14 | | | | | 0 | | SPT 13.68 m
20, 40; N > 50 | | 70/43 SS-KANGIOKA AL | | | | EOH @ 15 | 5.20 m | · <i>O</i> s | | | +9.20

 | - 16 | | | | | | | SPT 15.20 m
22, 24, 40,
20/20mm;
N > 50 | | | | | | | | | | | 1 | - | | | 7. | | | | | | RO WE WE 13. GEB LOG KILEY CF WE WE WE SO KILEY CF RO WE WE SO KILEY CF RO WE | eathered
eathered
elative F
eak, mod
CR - Tot
CR - Sol
QD - Ro | ss Wead (SW dd (HW dd (RW Rock Stall Corrected | athering
), mode
), comp
)
strength
ly stror
e Reco
e Reco
ality De | i - extremely we
ng, strong, very
every
every
esignation
layed as Dip/Di | (UW), slightly bed (MW), slightly d (CW), residually lak, very weak, strong | Water Strik | st: Flow Ty ke (1st, 2nd | Drill arisings
or collapsed hole
Filter material
pe/Adopted Value
d) | | | | | | hand-he
confirm
2. No co
typically
3. SPT
cone us
4. Wate | dinates an
eld GPS ar
ation.
ore loss. R
y exceeds
hammer e
sed unless | nd sub
Recove
run lei
fficien
indica
uring d | ations based on
ject to survey
red core sample
19th by 5-10%.
cy 93.8%; solid
1ted on log.
Irilling influenced | | <u>3</u> = | | men | | s in metres | - - | ng | | Core
Boxes: 0 | Rig/P
Geopr | | | (McMillan) | Driller: | | Logged
AvD | - | Checked by:
CFC | | | ojec | t: | s and C | Geologists | Fel: +643 3794402
Fax: +643 3794403
Te Diligence | Location Towns | | d/South Belt, | Rangio | ra | | Hole po | | OLE | | lo.: | |---|---|---|--------------------------|---|--|--|--------------------------|--|--|-----------|---------------------|---|---|---
---|--| | _ | b No | D.: | 074 | | | 12-18
12-18 | Grou | nd Level (m l
24.40 | _INZ): | Со- | | ates (NZTN
1.566.367 | M2000):
N 5,203,588 | | В | H3 | | | lient
Velh | | evel | opments | Ltd | | | Hole Depth
6.08 m | | Anç | | m Horiz.: | Direction:
-90° NZTM2000 | Sheet | | of 1 | | Type | Run | Fluid & Water | Piezometer | (refer to se | ogical Description eparate Geotechnical and Information sheet for their information) | | Weathering | Field Strength | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Description (type, orientation, spacing, roughness, persistence aperture, infilling etc) | TCR
(SCR
RQD
(%) | Samples | Tests | | SONIC GEOPROBE 8140LC (150Hz) | | 1 = = = = = = = = = = = = = = = = = = = | | SILT, minc and orang plasticity; (YALDHUI SPRINGS) 0.80m Grafine to meritace to medium disubrounde grewacke; Gravelly siminor clay low plastic Sandy fine trace to medium. | or clay; brown. "Soft"; plasticity (TOPSOIL) or clay; mottled light gree. "Soft"; moist; low slightly dilatant. RST MEMBER, TON FORMATION) des to sandy SILT; sandium. to coarse GRAVEL, nor silt; brownish-grey. ense; moist; gravel, do to subangular, sand, fine to medium. Ity fine to medium SAN. "Medium dense"; moist; trivity; dilatant. to coarse GRAVEL, nor silt; brownish-grey. erv dense; moist; graved to angular (broken grewacke; sand, fine to des to saturated. | X | | | +24.15
 +23.35
 +23.35
 +22.70
 +22.30 | | | 000 | | 0 | | SPT 1.52 m
4, 5, 4, 4, 3, 4;
N = 15
SPT 3.04 m
12, 14, 15, 13, 12, 11; N = 51
SPT 4.56 m
6, 10, 10, 12, 11, 12; N = 45 | | Roo
wea | ck Mas
athere
athere | d (SW), | ns: | EOH @ 6. | Bi | ackfill: | | Drill arisings or collapsed hole Filter material | | | | | hand
confi | oordinates ar
l-held GPS a
rmation. | ınd sub | ations based o
ject to survey | | Rel
wea
TCF
SCI
RQ
Attit | ative F
ak, mo
R - Tot
R - So
D - Ro
tude of | Rock Str
derately
al Core
lid Core
ck Qua | Recordity Design display | g, strong, very
very
very
signation
ayed as Dip/Di | ak, very weak, strong | Lugeon Te
Water Strik
Water Rise | e (1st, 2nd
(1st, 2nd | pe/Adopted Value | | | | | 2. No
typic
3. SF
cone
4. W | core loss. F
ally exceeds
T hammer e
used unless | run lei
efficien
s indica
during d | drilling influenc | | Project: | | nd Ge | ologists Fa | e: +643 3794402
e: +643 3794403
e: Diligence | Location | | d/South Belt, | Rangio | ra | | Hole po | sition:
o Site Plan. | | N | 0.: | |--|--|---------------------------|--|---|----------------------|-------------|--|---------|-----------|---------------------|---|---|---|---|--| | Job No.: | | | | Start Date: 20-1
Finish Date: 20-1 | 2-18 | | and Level (m l | | | | ates (NZTN | | | В | H4 | | Client:
Welhom | n De | velc | ppments L | td | | | Hole Depth
6.08 m | : | An | | m Horiz.: | Direction:
-90° NZTM2000 | Sheet | | of 1 | | Type | Fluid & Water | Piezometer | (refer to sep | gical Description parate Geotechnical and Il Information sheet for her information) | Legend | Weathering
| Field Strength | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Description (type, orientation, spacing, roughness, persistence aperture, infilling etc) | TCR
(SCR
RQD
(%) | Samples | Tests | | SONIC GEOPROBE 8140LC (150Hz) | | | "Very soft"; organics, ro organics, ro organics, ro organics, ro organics, ro CLAY; brow "Firm"; mois (YALDHUR: SPRINGSTI SITY of the second of the second or o | e organics; dark brown. moist; high plasticity; ottlets (TOPSOIL) In with grey mottling. st; highly plastic ST MEMBER, ON FORMATION) coarse SAND with l; greyish-brown. see to dense; moist; ounded to subangular, trated; gravel and sand coarse SAND with l; greyish-brown. see in oist; ounded to subangular, see GRAVEL with some lt; orange-brown. Very rated; gravel, to subangular, see GRAVEL with some lt; orange-brown. Very rated; gravel and sand, coarse SAND with l; greyish-brown. pse; moist; gravel, to subangular, coarse SAND with l; greyish-brown. pse; gravel, subrounded ar, greywacke. see GRAVEL with some lt; orange-brown. Dense ravel and sand, as | | | | | -1-23355 | | 000 | | 0 | | SPT 1.52 m
11, 14, 11, 14,
14, 11; N = 50
SPT 3.04 m
8, 8, 13, 13,
15, 13; N = 54
SPT 4.56 m
7, 6, 8, 8, 8,
10; N = 34 | | weathered (S'
weathered (H
weathered (R
Relative Rock | ation: Weather Weather Weather Weather Weather Weather Weather | S:
sring:
oderample | unweathered (Italy weathered letely weathered extremely wea strong, very s | JW), slightly (MW), highly (CW), residually k, very weak, trong | Ckfill:
Bentonite | st: Flow Ty | Drill arisings or collapsed hole Filter material | | 7 | | | hand
confi
2. No
typic
3. SF | oordinates ar
l-held GPS a
rmation.
o core loss. F
ally exceeds | nd sub
Recove
run ler
efficien | ations based of
ject to survey
red core samp
ogth by 5-10%
cy 93.8%; soli | | ľ | | | | LY | Riley Consulta
22 Moorhouse Ave
Christchurch
Tel: +643 3794402
Fax: +643 3794403 | nts | | | | | | | | | DRILL | НО | LE I | LO | G | |--------------------------------|--|--|--|--|--|--|-----------------------|----------------------------|--
--------|--------------------------------------|--------------------------|---------------------|--------------------------------|--|--|---|---|--| | | oject
umm | | et Ra | ngiora Du | ie Diligence | I . | catio | | d/South Be | elt, F | Rangio | ·a | | Hole po | osition:
to Site Plan. | | | N | 0.: | | Jo | b No |).:
17 | 7074 | 3 | Start Date:
Finish Date: | 19-12-1
19-12-1 | 8
8 | Grou | nd Level (
22.40 | | INZ): | Co- | | ates (NZTI
1,566,694 | M2000):
N 5,203,361 | | | В | H5 | | 1 - | lient:
Velho | |)evel | opments | Ltd | | | | Hole De
6.08 m | | | Ang | gle fro | m Horiz.: | Direction:
-90° NZTM2 | 2000 | Sheet: | | of 1 | | Туре | Run | Fluid & Water | Piezometer | (refer to se
Geologic | ogical Descript
eparate Geotechnical Information she
trther information) | cal and | Legend | Weathering | Field Stree | | Elevation (m LINZ) | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Descr
(type, orientation, s
roughness, persist
aperture,
infilling etc) | oacing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | SONIC GEOPROBE 8140LC (150Hz) | | | | Clayey SIL orange. "S (YALDHUI SPRINGS 0.60m Graorange mo orange m | e sand, trace clay wnish grey. "Very prounded to subara; sand, fine to me to coarse GRAVI inor silt; brownish; coarse did to subarquid to subarquid to subarquid to subarquid to subarquid to subarquid to subangular, si coarse GRAVI inor silt; brownish; gravel, si do subangular, si sand, fine to me addes to fine to coa some sand, mino own. Indes to trace silt; coarse s | ey and saticity) // with see; soarse, and, fine stiff; coarse, and dium. | | | 100 NSA NS | | +22.20
+20.90
+19.90
+19.70 | -1
-2
-3
4
7 | | 000 | | | 0 | | SPT 1.52 m
5, 5, 4, 5, 5, 6;
N = 20
SPT 3.04 m
10, 12, 15, 15,
16, 14; N = 60
SPT 4.56 m
6, 11, 12, 15,
17, 17; N = 61 | | Rel
wea
TCF
SCI
RQ | athered
athered
athered
ative R
ak, mod
R - Tota
R - Soli
D - Roo | s Wear
I (SW),
I (HW),
I (RW)
Cock St
derately
al Core
id Core
ick Qua | rength
/ strong
Recover Recovers | etely weathere - extremely we g, strong, very very very signation | ed (MW), highly d (CW), residually eak, very weak, strong | Wate | onite
it
on Tes | st: Flow Ty
e (1st, 2nd | Drill arisings or collapsed ho Filter material pe/Adopted Val d) | | | - 8 | | | | hand-h
confirm
2. No c
typicall
3. SPT
cone u:
4. Wate | rdinates an
eld GPS ar
nation.
ore loss. R
y exceeds
hammer e
sed unless
er added di | nd sub
Recove
run ler
fficien
indica
uring c | ations based or
ject to survey
red core sampl
19th by 5-10%.
cy 93.8%; solid
ted on log.
Irilling influence | | Attit | ection a | and Tre | nd/Plu | in metre | | | | | Core | () | Rig/Pla | | | (McMillan) | Driller:
Paul | | Logged | depth
by: | | | C | E | ngineer | SUL7 | E Y
ANTS | Riley Consult.
22 Moorhouse Ave
Christchurch
Tel: +643 3794402
Fax: +643 3794403 | | | | | | | | | DRILL | НО | LE I | | | |---|---|---|--|--|--|--|---|-------------------------------------|---|--|------------|---------------------|--------------------------------|---|--|---|---|---| | | oject
umm | | t Ra | ıngiora Du | e Diligence | | ocation
Fowns | | d/South Belt, | Rangio | ra | | Hole po
Refer to | sition:
o Site Plan. | | | | 0.: | | Jo | b No | | 074 | 3 | Start Date:
Finish Date | | | Grou | nd Level (m
23.70 | LINZ): | Co- | | ates (NZTN
1,566,309 | //2000) :
N 5,203,425 | | | В | H6 | | _ | lient:
/elhc | | evel | opments | Ltd | | | | Hole Depth
6.08 m | 1: | An | gle fro | m Horiz.: | Direction:
-90° NZTM2 | 000 | Sheet: | | of 1 | | Туре | Run | Fluid & Water | Piezometer | (refer to se | ogical Descrip
eparate Geotechi
al Information strther information | nical and
neet for | Legend | Weathering | Field Strengtl | evation | Depth (m) | Symbolic Defect Log | Average Defect
Spacing (mm) | Defect Descri
(type, orientation, sp
roughness, persiture,
aperture,
infilling etc) | acing, | TCR
(SCR)
RQD
(%) | Samples | Tests | | SONIC GEOPROBE 8140LC (150Hz) | | 1 1 - | | "Soft"; mo organics, longanics, l | ides to sandy with rel, fine to coarse d, greywacke sa to coarse GRA\mottled grey and sittle grey and fine to me. ND, minor fine to bles; orange-browel and sand, as arse GRAVEL, stor silt; brownish-yery dense; grave bove. | ttlling. N) ace fine h minor h, ind as l brown. bunded, iddium. o coarse wn. s above. | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | S NO | +23.30
+23.30

+23.30

+21.86

+21.25

+21.25 | 3
4
 | | 000 | | | 0 | | SPT 1.52 m
11, 6, 6, 4, 6,
8; N = 24
SPT 3.04 m
7, 7, 6, 9, 11,
11; N = 37
SPT 4.56 m
7, 20, 20,
20/70mm;
N > 50 | | E
Roce
wea | Synla | natio | nne: | | | Desti | fill. | | | | | | | | | D- | moul. | | | Rela
wea
TCF
SCF
RQI
Attit | athered
athered
ative R
ak, mod
R - Tota
R - Soli
D - Roo | s Weat
(SW),
(HW),
(cock Stillerately
al Core
d Core
ck Qua
defect | rength
stron
Reco
Reco
ity De
s displ | etely weathers extremely weg, strong, very very very signation ayed as Dip/D | ed (MW), highly ad (CW), residually eak, very weak, strong | Gri | entonite
out
geon Tes
ster Strik | st: Flow Type (1st, 2nd (1st, 2nd) | Drill arisings
or collapsed hole
Filter material
pe/Adopted Value
) | | | | | | hand-he
confirm
2. No c
typically
3. SPT
cone us
4. Wate | dinates an
eld GPS ar
lation.
ore loss. R
y exceeds
hammer e
sed unless | nd sub
Recove
run ler
fficien
indica
uring c | ations based on
ject to survey
red core sample
igth by 5-10%.
cy 93.8%; solid
ited on log.
Irilling influence | | Α | ll dir | | ions
ale 1 | in metre: | Contracto
McMillan | | | | Core
Boxes: 0 | Rig/Pla
Geopre | | | McMillan) | Driller: | | Logged
DDH | - 1 | Checked by
CFC | ## APPENDIX B **Machine Borehole
Photographs** | | | | | _ | | |----------------------|--|----------------------------|------|------------|--| | Client /
Project: | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | BH1 | | | | Project. | MACHINE BOREHOLE CORE PHOTOS | Date: | 18-1 | 9 DEC 2018 | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | | | and 2 of 8 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | | | 0.00m | | | | | Depth To (m): 3.96m | | 3.96m | | | Project No. | 170743 | Interval (m): | | 3.96m | | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | | | |-------------|--|-------------------|------|-------------|--| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 18-1 | 19 DEC 2018 | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | tes D. (I. f | | and 4 of 8 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | | | 3.96m | | | | | Depth To (m): 7.9 | | 7.92m | | | Project No. | 170743 | Interval (m): | | 3.96m | | | Client / | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | BH1 | | | |-------------|--|------------------|------|-------------|--| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 18-1 | 19 DEC 2018 | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | D. att. Same (a) | | and 6 of 8 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | | | 7.92m | | | | | Depth To (m): | | 12.16m | | | Project No. | 170743 | Interval (m): | | 4.24m | | | Client / | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | BH1 | | |-------------|--|---------------|------|------------|-----| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 18-1 | 9 DEC 2018 | Su | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | | and 8 of 8 | 301 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 12.16m | | | | | Depth To (m) |): | 15.20m | | | Project No. | 170743 | Interval (m): | | 3.04m | | | Client /
Project: | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | | | |----------------------|--|-------------------|------|-------------|---| | Project. | MACHINE BOREHOLE CORE PHOTOS | Date: | 17-1 | 18 DEC 2018 | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Box No(s). | | and 2 of 8 | ` | | | | Depth from (| m): | 0.00m | | | | | Depth To (m): 3.9 | | 3.96m | | | Project No. | 170743 | Interval (m): | | 3.96m | | | + | 1 | | 1 | | | |-------------|--|-----------------|----------|------------|-----------| | Client / | SUMMERSET GROUP HOLDINGS LTD | Hole ID: | Hole ID: | | | | Project: | SUMMERSET RANGIORA DUE DILIGENCE MACHINE BOREHOLE CORE PHOTOS | Date: | 17-1 | 8 DEC 2018 | Sum | | Notes: | Markers: start/end of run and SPT split-spoon sample in metres: "CL" indicates | Box No(s). | 3 | and 4 of 8 | Juil | | | | Depth from (m): | | 3.96m | JR | | | | Depth To (m) |): | 7.92m | | | Project No. | 170743 | Interval (m): | | 3.96m | CON | | Client / | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | BH2 | | |-------------|--|-----------------|-------|-------------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 17-1 | 18 DEC 2018 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | | | and 6 of 8 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (m): | | 7.92m | | | | Depth To (m): | | 12.16m | | Project No. | 170743 | Interval (m): | 4.24m | | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | BH2 | | | |-------------|--|---------------------|------|-------------|----| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 17-1 | 18 DEC 2018 | 1 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | | | and 8 of 8 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (m): | | 12.16m | li | | | | Depth To (m): 15.20 | | 15.20m | l | | Project No. | 170743 | Interval (m): 3.04 | | 3.04m | | | Client / | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН3 | | |-------------|--|---------------|-----|------------|-------------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 18 | DEC 2018 | Summerset | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | 1 | and 2 of 3 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 0.00m | RILEY | | | | Depth To (m) |): | 3.96m | | | Project No. | 170743 | Interval (m): | | 3.96m | CONSULTANTS | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | ВН3 | | | |-------------|--|-----------------|-----|----------|--| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 18 | DEC 2018 | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | | 3 of 3 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (m): | | 3.96m | | | | | Depth To (m) |): | 6.08m | | | Project No. | 170743 | Interval (m): | | 2.12m | | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН4 | | | | | |-------------|--|---------------|----|------------|-------------|--|--|--| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 20 | DEC 2018 | Summerset | | | | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | 1 | and 2 of 3 | | | | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (m | | 0.00m | RILEY | | | | | | | Depth To (m |): | 3.96m | | | | | | Project No. | 170743 | Interval (m): | | 3.96m | CONSULTANTS | | | | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН4 | |-------------|--|---------------|-----|----------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 20 | DEC 2018 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | | 3 of 3 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 3.96m | | | | Depth To (m) | : | 6.08m | | Project No. | 170743 | Interval (m): | | 2.12m | | Client /
Project: | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | BH5 | |----------------------
--|---------------|-----|------------| | Project. | MACHINE BOREHOLE CORE PHOTOS | Date: | 19 | DEC 2018 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | 1 | and 2 of 3 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 0.00m | | | | Depth To (m) | : | 3.96m | | Project No. | 170743 | Interval (m): | · | 3.96m | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН5 | |-------------|--|---------------|-----|----------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 19 | DEC 2018 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | | 3 of 3 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 3.96m | | | | Depth To (m) | : | 6.08m | | Project No. | 170743 | Interval (m): | | 2.12m | | Client /
Project: | SUMMERSET GROUP HOLDINGS LTD
SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН6 | | |----------------------|--|---------------|-----|------------|----------------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 20 | DEC 2018 | Summerset | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | 1 | and 2 of 3 | | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 0.00m | DRII FY | | | | Depth To (m) |): | 4.56m | | | Project No. | 170743 | Interval (m): | | 4.56m | CONSULTANTS | | Client / | SUMMERSET GROUP HOLDINGS LTD SUMMERSET RANGIORA DUE DILIGENCE | Hole ID: | | ВН6 | |-------------|--|---------------|-----|----------| | Project: | MACHINE BOREHOLE CORE PHOTOS | Date: | 20 | DEC 2018 | | Notes: | Drill sampling method: McMillan SONIC Geoprobe 8140LC (150Hz) | Box No(s). | | 3 of 3 | | | Markers: start/end of run and SPT split-spoon sample in metres; "CL" indicates
core loss in metres; brackets indicate run split between boxes; SPT blows/75mm. | Depth from (| m): | 4.56m | | | | Depth To (m) | : | 6.08m | | Project No. | 170743 | Interval (m): | | 1.52m | # APPENDIX C Laboratory Test Results Page 1 of 7 Pages Reference No: 19/022 Date: 15 January 2019 #### TEST REPORT – WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Attention: | A. van Dusschoten | |----------------------|--|-----------------------|-------------------| | Job Description: | Welhom Developments Investigations, cnr Townsend and | South Belt Road, Rang | giora | | Sample Description: | SILT with minor gravel and minor sand | Client Order No: | 170743 | | Sample Source: | HP1 @ 0.3m - 0.5m | Sample Label No: | N/A | | Date & Time Sampled: | Unknown | Sampled By: | Unknown | | Sample Method: | Bulk Disturbed * | Date Received: | 9-Jan-19 | | | 986, Test 2.8.1) | 4 | | | | , | 0.075 | 0.212 | 0.60 | 236 | 9.50 | 19.0
26.5
37.5 | 150
150
150
150 | 200 | |--------------------|---------------------|---------------------|---------------|---------|----------------|-----------|-------------|----------|------------|-----------|--------------|----------------------|--------------------------|--------------| | Test Sieve
(mm) | % Passing (by mass) | | 100 | | | | | | | | | | | | | 63.0 | | | 90 | | | | - | - | 4 | • | | | Hill | | | 37.5 | | | 80 | | | | - | | | . []] | | | | | | 26.5 | 100 | | | | | | | | | | HF | ·1 @ | 0.3m | - 0.5m | | 19.0 | 99 | | 70 | Ш | | | | | | | 1 | TŤ | | | | 13.2 | 96 | mass) | 60 | | | | | | Ш. | | | | | | | 9.50 | 95 | (a) | 50 | | | | | | | | | | | | | 4.75 | 93 | % Passing (by mass) | 30 | | | | | | | | | | | | | 2.36 | 92 | % Ps | 40 | | | | | | Ш | | | | | | | 2.00 | 92 | | 30 | | | Ш | | | | | | | | | | 1.18 | 92 | | 20 | | | | | | | | | | | | | 0.60 | 91 | | 20 | | | | | | | | | | | | | 0.30 | 90 | | 10 | | | | 111 | | | | | | | | | 0.212 | 89 | | 0 | | | | | | | | | | | | | 0.150 | 88 | | 0,001
CLAY | Fine | 0,01
Medium | Course | 0.1
Fine | Medium | Course | Fine | 10
Medium | Conrse | COBBLES | BOULDERS | | 0.075 | 85 | | | | SILT | | | SAND | | | GRAVEL | | | | | 0.063 | 84 | | The san | ple was | s received i | n a natur | al state. T | he perce | ntage pass | ing the t | 53μm test . | sieve wa: | s obtained | by differenc | | WATER CONTEN | T RESULT - NZS 4402:1986, Test 2.1 | | |---|------------------------------------|--| | Water Content: ("All In" As Received) | 29.6 % | | | Note: The sample was received in a natural state. | | | #### Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: emples Page 2 of 7 Pages Reference No: 19/022 Date: 15 January 2019 # TEST REPORT - WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Attention: | A. van Dusschoten | |----------------------|--|-----------------------|-------------------| | Job Description: | Welhom Developments Investigations, cnr Townsend and | South Belt Road, Rang | iora | | Sample Description: | SILT with minor gravel and minor sand | Client Order No: | 170743 | | Sample Source: | HP1 @ 0.3m to 0.5m | Sample Label No: | N/A | | Date & Time Sampled: | Unknown | Sampled By: | Unknown | | Sample Method: | Bulk Disturbed * | Date Received: | 9-Jan-19 | | 8/ D | | 1.48 | | | | 10% | | 5% | | 0% A | r Volds I | ine | | | |--|------------------|---------------|--------|-------|-----|-------|------|----------|---------------------------------------|--------|-------------|---------|-------|---| | % Retained
(+19.0mm Fraction) | 1.0 % | 1.40 | | | | 1 | | 1 | | \ | | | | | | Water Content:
("All In" As Received) | 29.6 % | 1.47 | | Q | | | 0000 | | V. | | | | | | | Maximum Dry Density:
(-19.0mm Fraction) | 1.47 t/m³ | 1.46 | | | | Park | | 1 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | \setminus | | | | | Optimum Water Content:
(-19.0mm Fraction) | 25.0 % | Density (Vm³) | | | 0 | | | | | | | | | | | otes: | | , Dens | | | | | | + | 9 | | + | | | | | • The sample was received state. | in a natural | rn
Ç | | | | | 1 | | | | | | | | | The material tested in the Compaction test was the a 19.0mm test sieve. The air voids lines were | fraction passing | 1,42 | | | | | 1 | | | i ii b | | | | | | an assumed solid density | | 1.41 | | | | | | | | | | | | - | | | | 1,40 | 19 | 20 21 | 22 | 23 24 | 1 15 | NK 1 | 7 28 2 | 9 30 | 31 32 | 33 | 14 35 | | | | | 1.00 | (MARK) | | 0 0 | | | ator Cor | itent (%) | F. 500 | 240 25 | - 30- 1 | H 35 | | #### Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: empleo Page 3 of 7 Pages Reference No: 19/022 Date: 15 January 2019 # TEST REPORT – WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Att | ention: | A. van Dusschoten | |----------------------|--|---------------|-----------|-------------------| | Job Description: | Welhom Developments Investigations, cnr Townsend and | South Belt Ro | ad, Rangi | ora | | Sample Description: | SILT with minor sand and trace of gravel | Client Order | · No: | 170743 | | Sample Source: | HP2 @ 0.3m - 0.5m | Sample Labo | el No: | N/A | | Date & Time Sampled: | Unknown | Sampled By: | | Unknown | | Sample Method: | Bulk Disturbed * | Date Receive | d: | 9-Jan-19 | | | IZE ANALYSIS
986, Test 2.8.1) | | | | | | | | 0.063 | 150 | 0.212 | 2 | 09'0 | 1.18 | 2.36 | 4.75 | | 3.2 | 9.0 | 5.7 | 20.0 | 100 | 000 | | | | |------------|----------------------------------|---------------|------|----------|---------|------------|--------|----------|--------|-------------|-------|-----------|------|-------|--------|------|----------------|--------------|------|-------|------|----------|-----------|-----------|-----|------| | Test Sieve | % Passing | | 100 | | - | ш | _ | | 33 | 6 | 3 6 | 11 | | _ | 40 | 7 | | 6 1 | - ^ | (A) | 100 | | ~ | Τ1 | 111 | n | | (mm) | (by mass) | - | | | | | | | 1 | - | مسنام | - | | | | П | | | | | Ш | | | | Ш | | | 53.0 | | 1 | 90 | | П | | | Ш | T P | | | 11 | Ш | | П | Н | Ħf | | t | П | Ħ | İ | П | # | Ħ | Ħ | | 37.5 | | | 80 | | | | | Ш | Ш | | | | Ш | | | Ш | Ш | | | | | | | Ш | Ш | | | 26.5 | | | | | | | | | | | | |
 | | | | HF | 2 | (a) | 0.: | 3m - | - 0 | .51 | m |] | | 19.0 | | | 70 - | | Ħ | | | Н | Ш | | Ħ | Ħ | Ħ | | П | Ħ | T | | | Ť | III | | | T | Ш | f | | 13.2 | | mass) | 60 | | | | | | Ш | | | + | | - | Н | H | Щ. | | H | Н | Ш | - | Н | # | Щ | H. | | 9.50 | | ş | 50 | | | | | | | | | | | | | | Ш | | | 7 | | | | | | ı | | 4.75 | 100 | % Passing (by | | | | | | | Ш | | | | | | | | | | ľ | | | | | П | | ı | | 2.36 | 99 | \\ \% | 40 - | | + | | | Н | Ħ | | H | Ħ | Ш | | H | H | Ш | | | H | Ħ | | | \forall | Н | | | 2.00 | 99 | | 30 - | | - | | | Ш | Ш | | Н | 4 | Ш | | Н | Щ | Щ | | | | Ш | | Ц | Щ | Ш | | | 1.18 | 98 | | 20 - | | | | | | | | | | | | Ш | | | | | Ш | Ш | | | | | | | 0.60 | 97 | | 203 | | | | | | | | | | | | | П | | | | П | П | | | П | | | | 0.30 | 95 | | 10 | \vdash | + | | | \vdash | | | H | \dagger | Ш | | H | + | H | | H | + | + | | \forall | + | Н | | | 0.212 | 94 | | 0 | | | | | | | | | | Ш | | Ц | Ш | | | | | | | | Ш | Ш | | | 0.150 | 94 | 1 | 0.0 | CLAY _ | Fine | 0.0
Med | dian. | Coarse | | 0.1
Fine | Me | dium | - | Oarse | Fi | oe . | , | 10
editan | C | oarse | _ | 100 | no | VIII C | | 1000 | | 0.075 | 91 | 1 | | | | SI | | | | | | ND | | | | | | VAET | | | | BBLES | | ULDI | | _ | | 0.063 | 90 | 1 | Th | e samp | ole was | s recei | ved ii | n a nati | ural s | tate. I | he p | ercei | ntag | e pas | sing I | he o | ί3μ <i>ι</i> . | n test | siev | e wa: | s ob | tained i | by d | iffer | enc | e. | | 3,000 | 70 | 1_ | WATER CONTENT RESULT - NZS 4402:1986, Test 2.1 | | | | | | | |---|--------|--|--|--|--|--| | Water Content: ("All In" As Received) | 27.8 % | | | | | | | Note: The sample was received in a natural state. | | | | | | | #### Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: emples Page 4 of 7 Pages Reference No: 19/022 Date: 15 January 2019 # TEST REPORT - WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Attention: | A. van Dusschoten | |----------------------|--|----------------------|-------------------| | Job Description: | Welhom Developments Investigations, cnr Townsend and | South Belt Road, Ran | giora | | Sample Description: | Clayey SILT with trace of sand | Client Order No: | 170743 | | Sample Source: | HP3 @ 0.3m - 0.5m | Sample Label No: | N/A | | Date & Time Sampled: | Unknown | Sampled By: | Unknown | | Sample Method: | Bulk Disturbed * | Date Received: | 9-Jan-19 | | | | | | | | | | | | | _ | | _ | _ | | | _ | | | | | _ | | | | _ | | |-----------------------------------|------------------------|---------------------|---------|-------|-------------|-------|------|-------------|----------|-------|-------|--------------|-------|----------|-------|------------|------|-------|------|-----------|------|------|------|-------|--------|-------|--------| | PARTICLE SIZ
(NZS 4402:1986, T | | | 100 | 6 | | | | | | | 0.063 | 0.150 | 0.212 |)
(1) | 09.0 | 1.18 | 2.00 | 4.75 | | 13.2 | 19.0 | 37.5 | 63.0 | 106 | 200 | | | | Test Sieve
(mm) | % Passing (by mass) | | 90 | | | | | | | 0 | -0- | | -0- | | | | | | | | | | | | | | | | 37.5 | |] | - | | | Ш | Ш | | 1 | | | | | Ш | | | | П | | | П | П | | | | Ш | | | 26.5 | | | 80 | | Ш | Ш | Щ | 9 | 4 | Ш | Ш | | | | Ш | | | Ш | Ш | | Ш | Ш | Ш | 1/ 1 | 1 | Ш | Ш | | 19.0 | | | | | Ш | Ш | lii | 1 | | | | | | | Ш | | | | | НЕ | 2 | | 0 | 3m | · - | 0.5 | m | | 13.2 | | j | 70 | 1 | Н | 4 | Ш | /_ | \perp | Ш | Ш | | ш | Ш | Ш | | | 4 | ļĻ, | | | | 111 | | - | U.S | - | | 9.50 | | | | | Ш | Ш | И | | | Ш | Ш | | | Ш | Ш | | П | Ш | HI | | Н | Ш | | | 1 | Ш | | | 4.75 | | 1855 | 60 | - | Н | 1 | 7 | - | \vdash | Ш | - | | Н | Ш | Щ | _ | 11 | 4 | Ш | | Н | Ш | 11, | | 4 | Н | 1411 | | 2.36 | | % Passing (by mass) | | | П | 1 | | | | | | | | | Ш | | | | Ш | | | П | Ш | | | | | | 2.00 | |] <u></u> | 50 | +- | + | 4 | 1111 | - | + | | | - | - | Н | - - | - | | ++ | 1 | - | Н | ++ | 114 | - | + | Н | | | 1.18 | 100 | issi | | | 1 | | | l | | | | | | Ш | Ш | | Ш | П | Ш | | Ш | Ш | | 1 | | | | | 0.60 | 99 | % P. | 40 | + | $^{\prime}$ | + | Ш | | Н | | ₩ | - | + | Н | ₩ | | + | ++ | Ш | - | H | ++ | Hi | - | + | H | -144 | | 0.30 | 98 | l °` | | " | Н | 11 | Ш | | | | | | П | Ш | Ш | | | Ш | Ш | | Н | | Ш | | | Ш | | | 0.212 | 98 | | 30 | 1 | Ħ | ++ | 1111 | | Н | + | Ħ | H | Н | + | +++ | | + | + | ш | | H | ++ | ₩ | | + | H | 1111 | | 0.150 | 98 | | | | | Ш | Ш | | | | Ш | | П | | Ш | | | | Ш | | П | Ш | Ш | | | | | | 0.075 | 97 | | 20 | | Ħ | Ħ | Ш | | П | П | Ш | | П | Ħ | Ħf | | Ħ | Ħ | Ш | | Ħ | # | # | | $^{+}$ | Ħ | 1111 | | 0.063 | 96 | | 10 | L | Ш | Ш | Ш | | | | 1 | | | | Ш | | Ш | | | ď. | Ш | Ш | Ш | | | | | | Fraction
Size | Interpolated % Passing | | 0 | 60 μm | 96 | | 0 | 001 | | ine | - | 01
ediun | To | oarse | - |). L
Fine | 1 | edium | | 1
cause | Τ. | | 1 | 0
dian | La | | T | 100 | | | 1000 | | 20 µm | 85 | | | CLAY | - | uie . | | ELT | 1 | oarse | | rnie | | AND | 1.5 | onse | r | ine | _ | AVEL | Co | arse | cc | BBLES | SE | ЮИС | ERS | | 6 µт | 60 | diffe | rence. | | 2 µm | 40 | | | he pH | - | - | | | - | | | | | | | | • | • | | | | | • | | | | | | PARTI | CLE SIZE ANAL | YSI | S & | HYI | RC | MI | CTI | ER A | NA | \L\ | (SIS | S RI | ESU | LT | S - : | NZS | 44(| 2:19 | 986 | , Te | st 2 | .8.1 | & | 2.8. | 4 | | | | Description | Fraction Ran | | | % | Wit | hin | Ra | nge | | | | escr | | | | | Fra | actio | on I | Rang | ge | | 0, | 6 W | ith: | in R | ange | | Coarse Gravel | 60.0mm to 20.0 | | | | | | | | | | | ine | | | | | 200 | μm | to | 60 µ | ım | | | | 2 | 2 | | | Medium Gravel | 20.0mm to 6.0 | | _ | | | \E | | | | | | oar | | | | | | _ | | 20 д | | | | | _ | 1 | | | Fine Gravel | 6.0mm to 2.00 | | - | | | ۰ | | | | | | ediu | | | | \perp | | | | 6 µr | | | | | | 5 | | | Coarse Sand | 2.00mm to 600 | | | | | 1 | | | _ | | | Fine | | t | | | 6 | _ | | μn | 1 | | | | | 0 | | | Medium Sand | 600 µm to 200 | μm | \perp | | | 1 | _ | | | | | Cl | ay | | | | | < 2 | 2 μι | n | | | | | 4 | 0 | | | WATER CONTENT & PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4 | | | | | | | | |--|-----------------------------------|--|--|--|--|--|--| | Water Content: ("All In" As Received) 30.1 % | | | | | | | | | Liquid Limit: (LL) | 50 | | | | | | | | Plastic Limit: (PL) | 30 | | | | | | | | Plasticity Index: (PI) | 20 | | | | | | | | Note: The sample was received in a natural state. The plasticity inde | x material tested was whole soil. | | | | | | | Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Checked By: Tests indicated as Not Accredited are outside the scope of the laboratory's accreditation Date: 10 to 15-Jan-19 Page 5 of 7 Pages Reference No: 19/022 Date: 15 January 2019 # TEST REPORT – WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | | Attention: | A. van Dusschoten | |----------------------|--|------------|-------------|-------------------| | Job Description: | Welhom Developments Investigations, cnr Townsend and | South Belt | Road, Rangi | ora | | Sample Description: | Clayey SILT with trace of sand | Client Or | der No: | 170743 | | Sample Source: | HP3 @ 0.3m - 0.5m | Sample L | abel No: | N/A | | Date & Time Sampled: | Unknown | Sampled 1 | By: | Unknown | | Sample Method: | Bulk Disturbed * | Date Rece | ived: | 9-Jan-19 | | 0/ D-4-!I | | 1.51 | 10% | 5% | | 0% Air Voids Line | | |---|-----------------------|---------------------|-------|----------|-----------------|-------------------|----------| | % Retained
(+19.0mm Fraction) | 0.0 % | | | | | | | | Water Content:
("All In" As Received) | 30.1 % | 1,50 | | 8 | 5 | | | | Maximum Dry Density: | 1.50 t/m ³ | 1.48 | | | | | | | Optimum Water Content: | 27.0 % | (日) 1.47 | | | 1 | . \ | | | Notes: | | Dry. Density (1/m²) | | 1 | | \ | | | The sample was receive
state. | d in a natural | 1.45 | | | | | | | The material tested in the
Compaction test was wh | | 1,44 | | | Ì | | | | The air voids lines were
an assumed solid densit | | 1,43 | | | | \ \ | | | | | 1,42 | | | | | | | | | 1.41 | 22 23 | 24 25 26 | 27 28 | 29 30 31 | 32 33 34 | | | | | | V | Valer Content (| | | Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: emples Page 6 of 7 Pages Reference No: 19/022 Date: 15 January 2019 #### TEST REPORT – WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Attention: | A. van Dusschoten | | | | | | | |----------------------|---|------------------|-------------------|--|--|--|--|--|--| | Job Description: | elhom Developments Investigations, cnr Townsend and South Belt Road, Rangiora | | | | | | | | | |
Sample Description: | Clayey SILT with minor sand | Client Order No: | 170743 | | | | | | | | Sample Source: | HP4 @ 0.3m - 0.5m | Sample Label No: | N/A | | | | | | | | Date & Time Sampled: | Unknown | Sampled By: | Unknown | | | | | | | | Sample Method: | Bulk Disturbed * | Date Received: | 9-Jan-19 | | | | | | | | WATER CONTENT & PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4 | | | | | | | | | |--|--------------------------------|--|--|--|--|--|--|--| | Water Content: ("All In" As Received) 27.9 % | | | | | | | | | | Liquid Limit: (LL) | 47 | | | | | | | | | Plastic Limit: (PL) | 31 | | | | | | | | | Plasticity Index: (PI) | 16 | | | | | | | | | Note: The sample was received in a natural state. The plasticity index me | nterial tested was whole soil. | | | | | | | | #### Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: Page 7 of 7 Pages Reference No: 19/022 Date: 15 January 2019 # TEST REPORT – WELHOM DEVELOPMENTS INVESTIGATIONS | Client Details: | Riley Consultants Ltd, P.O. Box 4355, Christchurch | Attention: | A. van Dusschoten | | | | | | | |----------------------|--|------------------|-------------------|--|--|--|--|--|--| | Job Description: | Velhom Developments Investigations, cnr Townsend and South Belt Road, Rangiora | | | | | | | | | | Sample Description: | Clayey SILT with minor sand | Client Order No: | 170743 | | | | | | | | Sample Source: | HP5 @ 0.3m - 0.5m | Sample Label No: | N/A | | | | | | | | Date & Time Sampled: | Unknown | Sampled By: | Unknown | | | | | | | | Sample Method: | Bulk Disturbed * | Date Received: | 9-Jan-19 | | | | | | | | % Retained | | 1.60 | 10% | | 5% | 0% Air Voids Line | |---|----------------|----------------|-------|-------|------|-------------------| | (+19.0mm Fraction) | 0.0 % | 1.59 | | | | | | Water Content:
("All In" As Received) | 24.1 % | 1.59 | | | 1 | | | Maximum Dry Density: | 1.58 t/m³ | 1,57 | | | 0- | | | Optimum Water Content: | 24.5 % | Density (t/m³) | | | | | | lotes: | | 1,55 | | | | | | The sample was received state. | d in a natural | D 1'84 | | | | | | The material tested in the Compaction test was wh | ole soil. | 1.53 | | | | | | The air voids lines were
an assumed solid density | | 1.52 | | | | | | | | 1,51 | | | | | | | | 1.50 | 19 20 | 21 22 | 23 | 24 25 26 27 28 29 | | | | | | | Wate | er Content (%) | | WATER CONTENT & PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4 | | | | | | | | | |--|-------------------------------|--|--|--|--|--|--|--| | Water Content: ("All In" As Received) 24.1 % | | | | | | | | | | Liquid Limit: (LL) | 44 | | | | | | | | | Plastic Limit: (PL) | 27 | | | | | | | | | Plasticity Index: (PI) | 17 | | | | | | | | | Note: The sample was received in a natural state. The plasticity index ma | terial tested was whole soil. | | | | | | | | #### Note: - Information contained in this report which is Not IANZ Accredited relates to the sample descriptions based on NZ Geotechnical Society Guidelines 2005, sample method * and sampling. - . This report may not be reproduced except in full. Tested By: L.T. Smith Date: 10 to 15-Jan-19 Checked By: d By: emples **Approved Signatory** A.P. Julius Laboratory Manager Test: BH1 Project: Summerset Rangiora File: 170743 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 LSN SLS2 Mw 6 PGA 0.19 g S 0 SIndex 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm Test: 170743 Project: Summerset Rangiora File: BH2 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 S LSN SLS2 Mw 6 PGA 0.19 g 0 S_{Index} 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm Test: BH3 Project: Summerset Rangiora File: 170743 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 LSN SLS2 Mw 6 PGA 0.19 g S 0 S_{Index} 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm Test: BH4 Project: Summerset Rangiora File: 170743 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 S LSN SLS2 Mw 6 PGA 0.19 g 0 S_{Index} 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm Test: BH5 Project: Summerset Rangiora File: 170743 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 S LSN SLS2 Mw 6 PGA 0.19 g 0 S_{Index} 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm Test: BH6 Project: Summerset Rangiora File: 170743 Water table depth: 1.3 m **SLS1** Mw 7.5 PGA 0.13 g S 0 mm S_{Index} 0 mm LSN 0 LSN SLS2 Mw 6 PGA 0.19 g S 0 SIndex 0 mm 0 mm **ULS** Mw 7.5 S S_{Index} 0 mm LSN 0 PGA 0.35 g 0 mm | ш | | | | | | | | | |---|-----|----------|--------------|----|---------|-----------|--------------------|---| | | | | | | DESIGN | DES CHECK | APPROVED FOR ISSUE | _ | | | | | | | AVD | LAK | | İ | | | | | | | DRAWN | CAD CHECK | T. SMITH | ı | | | 2 | 07.08.19 | SITE HATCH | LS | FY | RBT | | i | | | 1 | 31.07.19 | REPORT ISSUE | FY | DATE D | RAWN | ISSUE DATE | i | | l | RFV | DATE | ISSUF | BY | 20.11.1 | 18 | 7 / 8 / 19 | | | CLIENT | SUMMERSET VILLAGES (RANGIORA) LIMITED | |-------------|--| | ADDRESS | 104 TOWNSEND ROAD & 141 SOUTH BELT, RANGIORA | | PROJECT | SUMMERSET RANGIORA | | SHEET TITLE | GEOTECHNICAL INVESTIGATION LOCATION PLAN | | FOR C | CNSTRUCTION | |-------|---------------------| | | CADFILE
170743-1 | | 4 | CADFILE | | | | |---------|-------------|-------|-------|------| | | 170743-1 | | | | | ACEN7 | SCALE (A3) | ORIG. | SHEET | SIZE | | ACENZ | 1:2000 | A3 | | | | SO 9001 | DRAWING No. | REV. | | | | √GCS | 170743-1 | | 2 | 2 | # APPENDIX F Outline Development Plan