

Activity Management Plan 2021 Kaiapoi Urban Drainage Scheme

3 Waters | July 2021

Prepared by
Waimakariri District Council
215 High Street,
Private Bag 1005
Rangiora 7440,
New Zealand
waimakariri.govt.nz

Revision History:

Revision Nº	Description	TRIM	Date
А	Draft for Presentation to U and R Committee	200120006577	18/12/2020
С	Draft for presentation to Council	200120006577	23/02/2021
D	Final for presentation to Council	200120006577	

Document Acceptance

Action	Name		Signed	Date
	Kalley Simpson	3 Waters Manager	KDS	17/02/2021
Prepared by	Simon Collin	Infrastructure Strategy Manager	JCO	21/01/2021
	Chris Bacon	Network Planning Team Leader	Ch	17/02/2021
Reviewed by	Kalley Simpson	3 Waters Manager	KDS	17/02/2021
Approved by	Gerard Cleary	Manager Utilities and Roading	f. Many	17/02/2021
Adopted by	Council			

Contents

1	Exec	cutive Summary	4
2	Intro	oduction	5
3	Rela	ted Documents	5
4	Sche	eme Description (What Do We Have?)	6
5	Sche	eme Management Issues (What Do We Need to Consider?)	10
	5.1	Levels of Service	10
	5.2	Asset Condition	12
	5.3	Asset Criticality	15
	5.4	Risk Assessment	17
	5.5	Disaster Resilience Assessment	20
	5.6	Growth Projections	21
	5.7	Capacity & Performance	24
6	Futu	re Works & Financial Projections (what do we need to do?)	25
	6.1	Operation & Maintenance	25
	6.2	Renewals Programme	26
	6.3	Capital Works	29
	6.4	Financial Projections	34
	6.5	Valuation	35
	6.6	Revenue Sources	35
7	Impi	rovement Plan	36
	7.1	2021 Improvement Plan	36

Tables

Table 1: Key Asset Management Components	4
Table 2: Scheme Statistics for 2019/2020	7
Table 3: Stormwater Pipe Data Summary – Kaiapoi	7
Table 4: Open Channel Drain Data Summary	8
Table 5: Stormwater Asset Data Summary	8
Table 6: Data References	8
Table 7: Elective (non-mandatory) Levels of Service Targets and Performance Measure in 2020	
Table 8: Asset Condition Summary	14
Table 9: Number of Events per Level of Risk	17
Table 10 : High Risks – Improvements Required	18
Table 10: Risks to Above Ground Facilities	21
Table 11: Growth Projections	23
Table 12: Summary of Capital Works (Includes Renewals)	30
Table 14: Summary of "Shovel Ready" funded capital works	32
Table 13: Asset Valuation	35
Table 14: 2021 AMP Improvement Plan	36
Figures	
Figure 1: Network Schematic	9
Figure 2: Pipe Condition Assessment Plan	13
Figure 3: Asset Condition Summary	14
Figure 4: Pipe and Facilities Criticality	16
Figure 5: Projected Operations & Maintenance Expenditure – 30 years	
Figure 6: Pipe Renewal Time Frames	27
Figure 7: Annual Drainage – Projected Renewals 150 year Budget	28
Figure 8: Annual Projected Capital works Expenditure – 50 years	29
Figure 9: Projected Capital Upgrade Works (not to scale)	33
Figure 10: Projected Total Expenditure	34
Figure 11: Plan of Serviced Area as at November 2017	37

1 Executive Summary

The following table provides a summary of the key asset management issues of the Kaiapoi Urban Drainage Scheme identified through consideration of the levels of service, consents, asset condition, risk analysis, disaster resilience, growth projections, and capacity assessment:

Table 1: Key Asset Management Components

Levels of Service	While there have been no recent problematic rain events the drainage network is not capable of delivering the required level of service. A large number of public complaints were received about the impact of flood waters and ponding on Kaiapoi properties following the June 2014 rainfall event, and the 2017 event. Funding from the government 'shovel ready" programme has enabled the projects required to meet the 1 in 50 year flooding level of service (no floor levels inundated) to be brought forward. A specific delivery team has been established and the works are planned for completion in 22/23. Customer satisfaction (high or very high) for drainage, taken from the triennial survey, is 86% for this scheme.
Resource Consents	The scheme is currently achieving its targets relating to resource consent compliance. However, a new Kaiapoi urban network discharge consent has been applied for as required under the Land and Water Regional Plan and the outcome is pending. It is expected that the new consent conditions will require considerable expenditure (both opex and capex) over time to improve water quality discharging into receiving waters. Budget allowance has been made for this, commencing in 2026/27, but further work is needed to clarify exactly how the required outcomes will be achieved.
Capacity & Performance	The stormwater system is under capacity in both the urban and commercial areas of Kaiapoi, until the current works programme is completed.
Asset condition	The asset condition of the reticulation system is assumed to be good. This is due to much of the system being relatively new. This will be verified over time with the targeted CCTV programme. Many pump station components will however need renewal over the next 20 years. Data confidence is currently not high
Risk Assessment	Previous risk assessments have identified network under capacity, earthquake, and flap valve maintenance as the major risks. The capacity issues are in the process of resolution, and flap valve maintenance has been improved. The operational risk assessment is therefore outdated and needs a refresh, in conjunction with an update of the DRA. Planned for 2021.
Disaster Resilience	There are 9.4km of reticulation mains at high or extreme risk of earthquake damage. These are mostly concrete pipes, and there is no intention to replace them Many of the scheme pump stations are at high risk to damage from an earthquake. Further work to assess the risk and develop mitigations is required.
Growth Projections	As new developments are required to maintain stormwater discharges at predevelopment levels there is not necessarily a correlation between growth projections and stormwater discharge quantities.

2 Introduction

The purpose of this Drainage Activity Management Plan (AMP) is to outline the significant issues associated with the Council's assets and to show how the Council proposes to manage the schemes in the future.

This plan summarises the various components of the Kaiapoi Urban Drainage Scheme, its condition and performance, and identifies future funding requirements including upgrades where necessary.

The data that has been relied upon to produce this document was taken at the end of the 19/20 financial year. i.e. 30 June 2020.

Further details of the asset management practices used by Council to manage this scheme are summarised in the District Drainage AMP Overview document.

Projects identified to improve asset management processes for this scheme will also benefit the performance of other 3 waters schemes and are managed at a District level for efficiency.

Projects are also identified within this AMP that will maintain or improve levels of service.

There was significant earthquake damage to the stormwater system in Kaiapoi which, with the exception of the red zone areas, has now been repaired. New stormwater systems will be constructed in red zone areas as necessary, as the area is redeveloped. No significant legacy effects are expected.

All figures within this AMP exclude inflation

3 Related Documents

The following related documents have been used as reference documents or for guidance in the development of some of the sections in this Activity Management Plan.

- Waimakariri District Plan
- Population in the Waimakariri District (TRIM 170328030077)
- New Projections for LTP 2021-2031 (TRIM 200908117997)
- WDC Asset Management Policy (TRIM 180605062091)
- 2019 Customer satisfaction Survey (TRIM 200313034937)
- Development Contributions Policy 2021/22 (TRIM 200729095963)
- Flood Mitigation Works and Funding (TRIM 141009110892[v2])
- Kaiapoi Stormwater and Flooding Improvements Options report (Trim 200917123563)
- Dudley Drain Investigation History (TRIM 200610069026)
- McIntosh's catchment optioneering and historical investigation reports
 - o (TRIM 201008134174)
 - o (TRIM 141010111221)
 - o (TRIM 120921064454)
 - o (TRIM 080311007513

4 Scheme Description (What Do We Have?)

Kaiapoi is an urban area of around 12,000 people, situated on the outskirts of Christchurch just north of the Waimakariri River.

Much of Kaiapoi is very low lying, with parts below mean high water level at spring tides. Kaiapoi has the most complex stormwater drainage system in the Waimakariri District with most of the catchments relying on pumping systems to ensure that stormwater can be discharged when the Kaiapoi River is in flood or at high tide. All stormwater from Kaiapoi finds its way into the Kaiapoi River, either directly through pumps or via drains and watercourses. Some pump stations are under capacity and upgrades are planned starting FY21/22

Stormwater assets in the Kaiapoi urban drainage scheme include:

Eight main stormwater pump stations:	Three minor stormwater pump stations
Bowler Street	Williams Street (Countdown)
Parnhams Drain (Motorway)	Dudley Supplementary
Cridland Street	Alexander Lane
Beswick Street	
Feldwick Street	
Dudley Drain	
Coups Terrace	
Stone Street	

Twelve Stormwater Management Areas:

- Sovereign Lakes
- Sovereign Green
- Moorcroft
- Beach Grove
- Storer Street
- Streamside Terrace
- Barnard Street North
- Barnard Street South
- Sovereign Palms
- Courtney
- Beswick St

One stormwater pre-treatment basin: Kaikanui

Piped networks, open drains and other auxiliary stormwater facilities.

Some key statistics (end of 2019/20 year) of the scheme are shown in Table 2 - 6.

The extent of the currently serviced area is presented in Appendix A, and a schematic of the network is shown in Figure 1.

Table 2: Scheme Statistics for 2019/2020

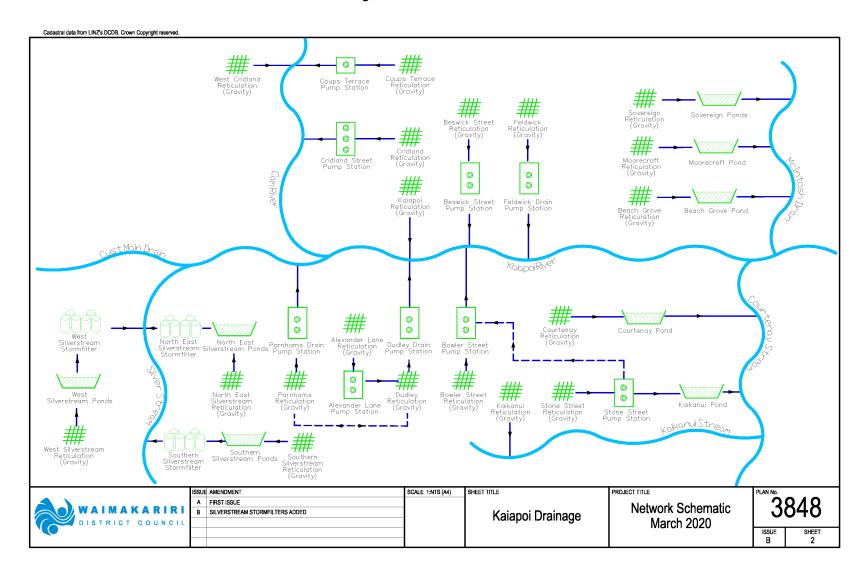
Scheme Parameter	Statistics	Source
Drainage System	Gravity with 11 Pump Stations	
Drainage Area	845 ha	Source - GIS Layer
Reticulation and Treatment	Open drains and piping, 12 stormwater management areas for treatment and attenuation. One pre-treatment basin. Three Stormfilters in Silverstream for treatment.	
Length of Reticulation and Open Channel	37.1 km Main 6.9 km Channel	Drainage Asset Valuation
Total Replacement Value	\$44,939,589	Tables 9-4 and 9-5, pages 66 to 68
Depreciated Replacement Value	\$37,256,405	
Rated Properties	5,227	Source 2019/20 Rating Query

Table 3: Stormwater Pipe Data Summary – Kaiapoi

	Stormwater pipe length (m) by diameter and pipe material												
D. 14		Pipe Diameter (mm)											
Pipe Material	100	150	225	300	375	450	525	600	750	900	1050	>1200	Total
Concrete	0m	417m	1,621m	3,202m	3,735m	5,156m	5,070m	2,375m	3,397m	1,812m	1,362m	751m	28,898m
Perforated HDPE	0m	0m	0m	1,315m	0m	0m	1,315m						
PVC	138m	356m	548m	3,118m	763m	0m	86m	136m	52m	0m	0m	0m	5,198m
Other	0m	28m	1,227m	42m	17m	0m	0m	233m	60m	0m	9m	0m	1,616m
Total	138m	801m	3,395m	7,678m	4,516m	5,156m	5,155m	2,744m	3,509m	1,812m	1,370m	751m	37,027m

Table 4: Open Channel Drain Data Summary

Open Channel Drains						
Material	Length (m)					
Unlined Drain	6,556					
Lined Drain	328					
Total	6,883					


Table 5: Stormwater Asset Data Summary

Stormwater Assets							
Asset Type	Count						
Inlet (Sump)	45						
Manhole	701						
Node	13						
Valve	40						
Total	799						

Table 6: Data References

Data Reference	Trim Reference
2020 3 Waters Asset Valuation	<u>200824109857</u>
2017 30 Year Connection & Rating Unit projection	<u>171026115834</u>
Flood Mitigation Works	<u>141009110892</u>
2020 50 Year Water and Sewer Growth Forecast	<u>200224024348</u>

Figure 1: Network Schematic

5 Scheme Management Issues (What Do We Need to Consider?)

There are a number of key aspects to consider when managing a drainage scheme, these include:

- Desired & actual levels of service
- Asset condition & criticality
- Capacity & performance
- Risks
- Growth predictions for the scheme

These issues have been assessed in detail and are summarised in the following sections.

5.1 Levels of Service

Table 7 sets out the performance measures and targets for the scheme, and performance achievement against targets since 2008.

Mandatory performance measures are measured at the district wide level and are not included in the individual drainage scheme AMPs. They are located in the District Overview Drainage Activity Management Plan. However, there is considerable overlap between the measures at Scheme and District levels. Mandatory measures cover flooding, consent compliance, time to respond to faults, and complaints. The scheme LOS measures include more detail, and cover complaints, consent compliance, flooding, but not response times, which are only measured at scheme level

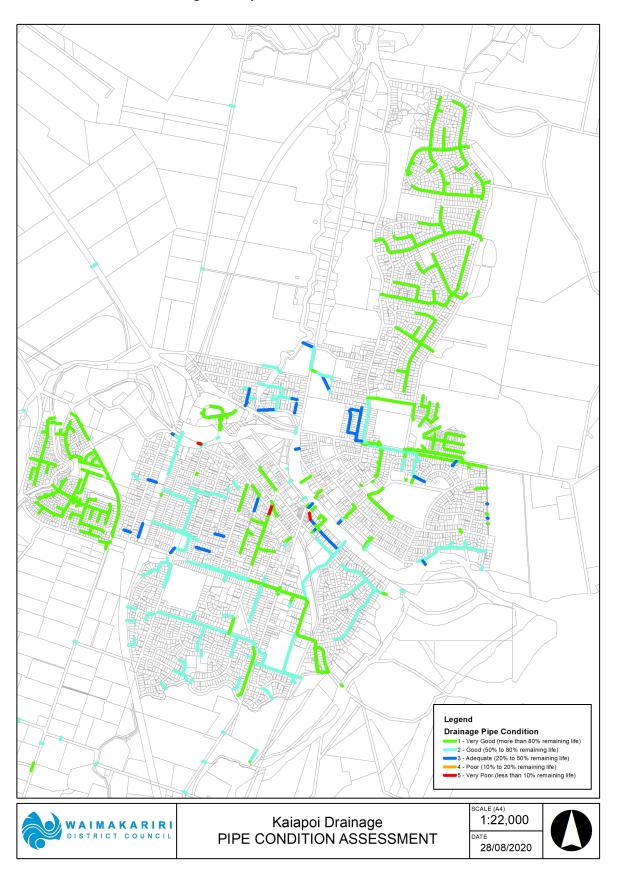
None of the WDC targets are expected to change with time so only the one target value has been shown in this document

Performance in Table 7 is measured against the performance measures set in 2018, as part of the 2018-28 Long Term Plan process. Going forward from 2021 onwards, performance will be against the modified set of performance measures that were presented to the Council's Utilities and Roading Committee in 2020 (refer report 200406043184[v2]), and subsequently approved by Council. These revised levels and targets are detailed in the District Overview Water Supply Activity Management Plan.

Table 7: Elective (non-mandatory) Levels of Service Targets and Performance Measures as Assessed in 2020 * Note "Y" indicates that the LOS has been met, and "N" indicates it has not been met

Details of performance measures may have been modified between various revisions of the AMP. The Previous Results reported are as assessed against the most relevant performance measure at the time of assessment.

		2018 – 2021 Performance Measure	2018 – 2021	2020				Previous Results*				
Section Service	Level of Service	,,	Target	Result	Commentary	Status	Action to Address	2017	2014	2011	2008	
Resource Consent	Consent Breach	Number breaches of consent conditions that result in an ECan report that identifies compliance issues.	Nil per year	Nil	There were no consent breaches that resulted in non-compliance reports being received from Environment Canterbury for FY 19/20.	Achieved	N/A	Y	Υ	Υ	Y	
	Flooding - CBD Nuisance or Carriagew	Minimum return period of flood event that can be accommodated in the system without having nuisance flooding of properties or road carriageways in the CBD area.	1 in 10 year	-	Recent roading upgrades will have assisted to meet this target, but additional modelling required to determine if LOS can be met.	-	None. LOS is changing from 2021 forward, to be based on complaints	N	N	N	N	
Flooding	Flooding - Dwellings	Minimum return period of flood event that can be accommodated in the system without having flooding of dwellings.	1 in 50 year	-	1 in 50 year modelling has been carried out to determine flood levels but until floor level surveys are carried out it is not known how many dwellings are at risk.	Not achieved	Requires floor levelling to be carried out	N	N	N	N	
	Flooding - Nuisance or Carriagew ay	The percentage of complaints about nuisance flooding caused by lack of capacity that are investigated and a project planned to resolve the issue. Applies to rain events with an Average Recurrence Interval of 5 years or less.	100%	100%	No outstanding nuisance drainage issues recorded	Achieved	N/A	N	N	N	N	


5.2 Asset Condition

The current assessment of asset condition is based on theoretical remaining useful life derived from component age and adopted useful life. Adjustments to the remaining life are made to individual components where information is available to suggest the theoretical remaining life is inappropriate.

A targeted drainage CCTV programme was started in 2016 to survey the reticulation network and assign evidence based condition ratings. Only a small amount of the network has been inspected so far and while the data has been placed in the Asset Register, it has not yet been analysed. The expected purchase of the widely used InfoAssets software for this purpose will aid this analysis. As data is gathered and analysed, the rate of CCTV inspections may need to be increased. The data has been used in the renewals model

Figure 2 below, shows the assessed pipe condition for all pipes within the scheme. Figure 3 summarises the theoretical asset condition for both the network and headworks in a graph, while Table 8 provides more detail about the value of the assets within different asset condition categories.

Figure 2: Pipe Condition Assessment Plan

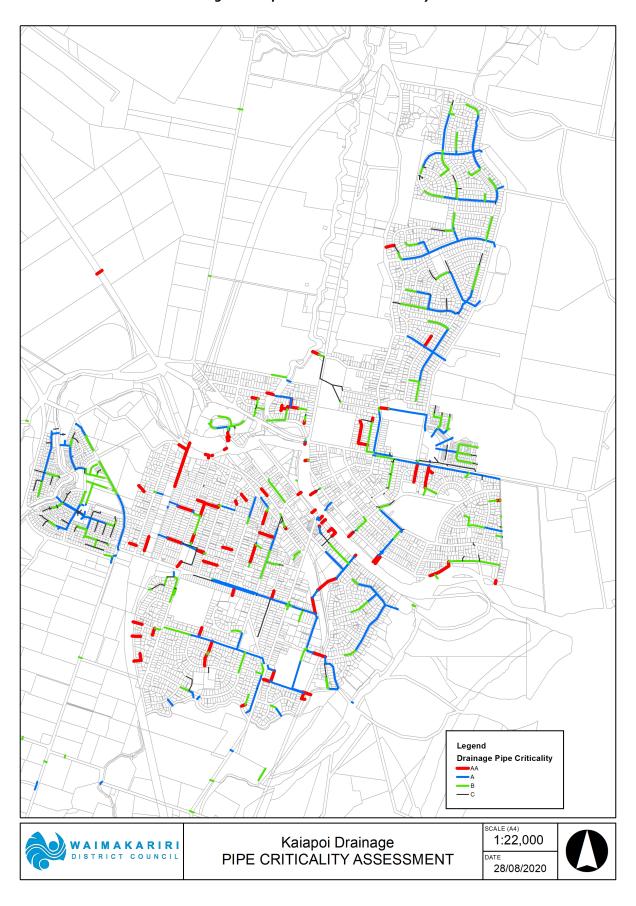
Kaiapoi Urban Drainage Scheme Asset Condition \$35,000,000 \$30,000,000 \$25,000,000 \$20,000,000 \$15,000,000 \$10,000,000 \$5,000,000 \$-Very Good Adequate Poor Very Poor Good ■ Total Headworks Value \$4,872,000 \$-\$607,000 \$548,000 \$366,000 ■ Total Reticulation Value \$85,000 \$25,717,000 \$10,054,000 \$1,329,000 \$-■ Total Reticulation Value ■ Total Headworks Value

Figure 3: Asset Condition Summary

"Headworks" is inclusive of all above ground assets associated with the scheme. e.g. buildings, pump sets.

Table 8: Asset Condition Summary

Condition Grade	Definition	Pipeline Quantity	Total Reticulation Value	Total Headworks Value	Total Value
1	Very Good More than 80% of life remaining	25.0 km <i>64%</i>	\$ 25,717,000 <i>69%</i>	\$ 4,872,000 76%	\$ 30,589,000 70%
2	Good Between 50% and 80% of life remaining	11.5 km 29%	\$ 10,054,000 27%	\$ 548,000 <i>9%</i>	\$ 10,602,000 24%
3	Adequate Between 20% and 50% of life remaining	2.5 km <i>6%</i>	\$ 1,329,000 4%	\$ 366,000 <i>6%</i>	\$ 1,695,000 <i>4%</i>
4	Poor Between 10% and 20% of life remaining	0.0 km <i>0%</i>	\$ - 0%	\$ - 0%	\$ - 0%
5	Very Poor Less than 10% of life remaining	0.2 km <i>0%</i>	\$ 85,000 <i>0%</i>	\$ 607,000 <i>9%</i>	\$ 692,000 2%
Тс	otal	39.2 km	\$37,185,000	\$6,393,000	\$43,578,000


5.3 Asset Criticality

Asset criticality provides an indication of the importance of an individual asset and the corresponding impact on the service delivery should the asset fail for any reason. Criticality is used in risk based investment decisions to help decide when an asset should be replaced to avoid the consequences of failure. For 3 waters the Council has developed an assessment process which scores assets from most critical 'AA' to least critical 'C'. Further details of the criticality assessment methodology is covered in the Drainage Overview AMP.

The pipe criticality scoring process has been significantly improved through automation and dynamic links to GIS data layers for this AMP.

Figure 4 provides a spatial view of asset criticality for the scheme.

Figure 4: Pipe and Facilities Criticality

5.4 Risk Assessment

An Operational Risk Assessment was first undertaken for the Kaiapoi Drainage Scheme in 2004, and it has been regularly updated since that time. It was last updated for the 2015 AMP review. The key output from the risk assessment is the identification of any extreme and high risks to the scheme, which need to be mitigated.

The District Wide Overview details the risk events considered and includes a summary of the risk assessment results for all the drainage supply schemes and is useful in indicating overall wastewater network priorities.

Table 9 below summarises the risks for the Kaiapoi Urban Drainage Scheme.

Table 9: Number of Events per Level of Risk

Risk Level	2004	2008	2011	2014
Extreme risks	0	0	0	0
High risks	8	6	11	9
Moderate risks	30	32	27	29
Low risks	13	13	14	17
Not applicable	0	0	0	0
Total	51	51	52	56

The table on the following two pages provides detail of the high risks affecting the Kaiapoi Drainage Scheme.

Funding recently received from the Covid-19 and Recovery Fund means that the significant works required on both sides of the Kaiapoi river to improve system capacity will be completed within the first two years of the 2021-31 LTP. Previously allocated Council funding has been brought forward to complement the government funding. This work will alleviate the flooding risks shown in the table. The flap valve risk is being mitigated through an improved maintenance and inspection programme. The risk assessment is therefore somewhat outdated and in need of review.

Furthermore, improvements are required to align the Risk Assessment and Disaster Resilience Assessment methodologies for rating likelihood and consequence. This alignment of the assessment rating methods will enable prioritisation of the remaining tasks needed to improve resilience. The risk assessment review work is planned for 2021

District wide, moderate risks are being deferred until extreme and high risks have been addressed.

Table 10 : High Risks – Improvements Required

Risk Event & Cause	Reasoning	Response – updated comments	Project Details - Updated	Project Ref	2011	2014			
Collection									
Overflow or flooding of stormwater from pipes or open drains due to insufficient reticulation capacity	Stormwater Management Plan (SMP) and stormwater modelling have identified reticulation capacity areas	"Shovel Ready" projects will resolve	Suite of 9 projects	URD0142- URD0150	Ĥ	Н			
Overflow or flooding of stormwater from pipes or open drains due to poor reticulation condition (blockages)	Risk increased as a result of better information. Potential for flat grade pipelines and inverted siphons to silt up	Further investigation required to quantify risk	Incorporate into the CCTV programme		М	Н			
Overflow or discharge of stormwater from Beswick Pump Station due to pump failure	Pumps have a history of breakdowns	This pump station is being abandoned. No further action required as pump station will be removed	No further action		Н	н			
Overflow or discharge of stormwater from Feldwick Drain Pump Station due to pump failure	Old duty / assist pumps with no telemetry	"Shovel Ready" projects will resolve	Feldwick Flood PS and Rising Main Feldwick SMA and Drain Upgrade Feldwick SW PS UPgrade	URD0142 URD0143 URD0144	Н	н			
Natural disaster & other due to earthquake	Pipe joints and manhole connections could be susceptible to liquefaction	Review risk assessment methodology as part of 2021 AMP improvement plan and use DRA information to better inform risk scores	Risk Assessment Update	IP045	Н	Н			

Risk Event & Cause	Reasoning	Response – updated comments	Project Details - Updated	Project Ref	2011	2014		
Treatment								
Natural disaster & other due to earthquake	Pipe joints and pond bunds could be susceptible to liquefaction	Review risk assessment methodology as part of 2021 AMP improvement plan and	Risk Assessment Update	IP045	Н	Н		
Natural disaster & other due to flood / tsunami	& other due use DRA information to better		·		Н	Н		
		Disposal						
Natural disaster & other due to earthquake	Pipework and headwalls could be damaged by earthquake	Review risk assessment methodology as part of 2021 AMP improvement plan and use DRA information to better inform risk scores	Risk Assessment Update	IP045	Н	Н		
Natural disaster & other due to weather	Debris from storms could interfere with flap valves	Maintenance check on WDC flap valves, continue to liaise with ECan to ensure maintenance of their flap valves	Flap Valve Inspection Programme implemented and ongoing		Н	Н		

5.5 Disaster Resilience Assessment

The 2009 Disaster Resilience Assessment (DRA) is a desk top study that primarily considered the risks to above ground structures presented by natural hazard events across all Council operated 3 Waters schemes. The original assessment was updated in 2012 using revised hazard and asset behaviour information captured during the 2010-11 Canterbury earthquake sequence.

The vulnerability assessment carried out for water and wastewater pipes in areas prone to liquefaction, has not been carried out for the stormwater network, as it contains no AC or earthenware pipes, which are those most vulnerable to damage in an earthquake strong enough to induce liquefaction.

The Kaiapoi scheme is located in an area of liquefaction susceptibility. A length of 8.6km of critical mains, laid mostly in concrete have been identified as being at extreme or high risk during an earthquake. While concrete drainage pipes within the catchment are vulnerable to damage in an earthquake there is no intention to replace these types of pipes because (a) they are expected to be in good condition, and have a high residual value, and (b) the improvement in risk from using other pipe types would be marginal.

Above Ground Facilities

The above ground facilities were assessed for risk of failure against 13 natural and 2 manmade hazard scenarios. The following risk profile (Table 11) reflects the likelihood of the event occurring and the consequence on the community of the facility failing. Hazards classified as having 'No Known Risk' have been omitted from the table.

Table 11: Risks to Above Ground Facilities

Threat	Alexander Lane PS	Beswick St PS	Bowler St PS	Coups Tce PS	Cridland St PS	Dudley Drain PS	Feldwick Drain PS	Parnhams Drain PS	Stone St PS	Williams St PS
100 yr Local Flooding	М	-	-	М	М	Н	-	М	L	-
475 yr Earthquake Induced Slope Hazard	L	L	L	L	L	L	L	L	L	L
100 Yr Ashley Flood	-	-	М	-	М	-	-	-	-	-
500 Yr Ashley Flood	L	L	L	L	L	L	L	L	L	L
3,300 yr Waimak Flood		L	-	-	-	-	L	-	-	-
Earthquake (50 yr)		Н	М	М	Н	Н	Н	Н	Н	М
150 Yr Earthquake	L	М	М	L	М	М	М	М	М	L
475 Yr Earthquake	L	L	L	L	L	L	L	L	L	L
200 Yr Tsunami	-	-	-	-	-	-	М	-	-	-
Wildfire	L	L	L	L	L	L	М	L	L	L
Snow 150 Yr	L	L	L	L	L	L	L	L	L	L
Wind 100 Yr		L	L	L	L	L	L	L	L	L
Lightning		L	L	L	L	L	L	L	L	L
Pandemic	М	М	М	М	М	М	М	М	М	М
	L	L	L	L	L	L	L	L	L	L

The scheme is located in the high liquefaction susceptibility zone and the facilities are considered to be of low resilience to seismic activity. Further site specific work is required to properly quantify the risks.

However, the planned works to alleviate flooding risk will replace a number of the major pump stations, which will therefore also reduce the identified earthquake risks. Site specific assessments of the Cridland St and Stone St pump stations will still be required.

The Council's response to the remaining risks is being managed at a district level via the DRA Action Plan and related projects. Refer to the District level AMPs for details.

5.6 Growth Projections

There are a number of factors that are likely to influence future demand on land drainage systems. These may include:

- Population trends
- Changes in land use

- Climate change
- Changes in legislation
- Advancements in drain management

For any rezoned residential areas or major developments, Council's policy is that stormwater discharge must be restricted to predevelopment levels. This will mean that the effects of growth should not be reflected in increased stormwater runoff.

Some recent examples of where this policy of restricting runoff to predevelopment levels has been applied are the Courtney Downs, Moorcroft, Silverstream and Sovereign Palms subdivisions, with their associated stormwater retention areas.

The overall district population growth scenario used for the 2021 AMP update was supplied by Council's Development Planning Unit, broken into towns and rural areas. Stormwater growth projections were calculated using the New Projections for LTP 2021-2031 (TRIM200908117997), which was the basis for infrastructure planning.

Due to issues that have occurred with the Census 2018, the population projections that would normally be used as a basis for updating the work previously developed by the Council's Development Planning Unit have not been released by Stats NZ in time for the development of this assessment.

However, based on the historical growth patterns of new dwelling Building Consents over the last three years (636 in 2017/18, 661 in 2018/19 and 615 in 2019/20), the projections used for the previous LTP/infrastructure strategy remain valid to be used for infrastructure planning. As the timeframe for this infrastructure planning is for the thirty years between 2021 to 2051, the previous population projections have been extended out a further three years, as documented in New Projections for LTP 2021-2031 (TRIM200908117997).

It is important to provide a brief comment on COVID19 and the impact it could have on population projections. At the time of writing this paragraph (August 2020), New Zealand is currently in Level 3 restrictions in Auckland and Level 2 restrictions in the remainder of the country. While international migration is currently low arising from the COVID19 travel restrictions, a significant number of New Zealanders are returning home due to the impact of COVID19 on overseas countries. This has contributed to a high level of population growth nationally over the last six months, which has had a flow on effect to growth in the Greater Christchurch and Waimakariri Districts. How long this might continue for and when international migration (from other countries) might return to pre COVID levels is still to be determined. However the existing population projections remained the most appropriate to use for infrastructure planning at this time.

Growth for the Stormwater schemes was calculated using the WDC population projections (TRIM200908117997). Growth in the number of properties expected to be included within the drainage scheme are included in below.

Table 12: Growth Projections

	Rates Strike	Years 1 -	Years 4 - 10	Years 11 - 20	Years 21 - 30
Kaiapoi	2019/20	2021/22 to 2023/24	2024/25 to 2030/31	2031/32 to 2040/41	2041-42 to 2050/51
Projected Properties	5174	5517	5995	6635	7198

Note that the time frames have been chosen to reflect the periods 3, 10, 20, 30 and 50 years from the AMP release date, however due to the time it takes to complete the analysis the base rates strike data used was from 2019/20.

To calculate connection growth numbers from the population projections, existing Kaiapoi drainage connections were counted then the Kaiapoi population growth profile (from New Projections for LTP 2021-2031 (TRIM200908117997)) was applied, for the development horizons in .

5.7 Capacity & Performance

A number of new upgrades were developed or programmed for future investigation as a result of the June 2014 flood event. These new projects include:

- Parnhams Drain and culvert upgrade (now complete)
- Parnhams Drain pump station upgrade (now complete)
- Long term options assessment to improve capacity
- Kaiapoi West long term upgrade options assessment
- Island Road drain upgrades and culvert replacements (in progress)
- Feldwick Drain capacity upgrade
- Long term options assessment for Feldwick Drain catchment and pump station
- Red zone area investigations (in conjunction with flow management into the green zone)

Further issues arose during the wet weather events of 2017, and it is evident that the network is under capacity, and not capable of meeting the required flooding level of service.

Additional funding via the government "shovel ready" programme in 2020 has enabled the bringing forward of the above flood improvements projects, plus some additional projects have been added to the overall programme. A dedicated project team has been established to ensure that the planned delivery completion date of 2022/23 is achieved. The table below provides a description of the planned work.

Project ID	Project Name	Description
URD0142	Feldwick Flood PS and Rising Main	New flood pump station on Feldwick Drain constructed as part of the Kaiapoi Stormwater and Flooding Improvements project.
URD0143	Feldwick SMA and Drain Upgrade	New Feldwick SMA and upgrade of existing Feldwick Drain as part of the Kaiapoi Stormwater and Flooding Improvements project.
URD0144	Feldwick SW PS UPgrade	Upgrade of existing Feldwick Drain PS as part of the Kaiapoi Stormwater and Flooding Improvements project
URD0145	McIntosh Drain Upgrade and Wetland	New McIntosh wetland and upgrade of existing McInotsh Drain as part of the Kaiapoi Stormwater and Flooding Improvements project
URD0146	McIntosh Flood PS	New flood pump station on McIntoash Drain constructed as part of the Kaiapoi Stormwater and Flooding Improvements project
URD0147	Otaki Flood PS and Rising Main	New flood pump station in Otaki Street and rising main out to the Kaiapoi River constructed as part of the Kaiapoi Stormwater and Flooding Improvements project
URD0148	Otaki Basin Interceptor Pipeline	New pipeline to intercept flood flows from Sunday School Drain, Dudley Drain and Parnhams Drain and convey them to the new Otaki Flood PS to be constructed as part of the Kaipaoi Sotmrwater and Improvements project
URD0149	Dudley SW PS Upgrade	Upgrade of Dudley Drain pump station as part of the Kaiapoi Stormwater and Flooding Improvements project
URD0150	Sneyd Street Pipe Upgrade	Upgrade of existing pipe in Sneyd Street as part of the Kaiapoi Stormwater and Flooding Improvements project

Outstanding at this stage is the necessary floor levelling of houses which the modelling indicates may be vulnerable, which will confirm if the levels of service are being met. This is included at the end of this document as an improvement project

6 Future Works & Financial Projections (what do we need to do?)

This section covers the future works required to meet the target levels of service, maintain the asset in an acceptable condition, reduce the risks to an acceptable level and accommodate growth.

6.1 Operation & Maintenance

Maintenance of the open drains is a combination of proactive and reactive work. Drains known to require clean out are completed on an annual basis, with other drains being cleaned when notification is given by adjacent landowners. Much of the routine work is done in the summer months when weed growth is at its peak. In some locations only hand cleaning and or spraying is possible given the limited access available.

Depending on weed growth, some areas may be cleaned more than once a year. This is particularly so where drains are in highly visual areas such the various retention ponds, Parnham's Drain or parts of the Sunday School Drain. In addition to weed-spraying, drains are cleaned out and re-shaped with a digger depending on condition.

The several pump stations in the Kaiapoi Urban Drainage Scheme, along with any other structures, are maintained by the WDC Water Unit. Inlet grills and more rural drains are maintained by the WDC Drainage Maintenance Contractor. Regular visits are scheduled with test points for key equipment recorded on hand held devices. It is expected that this scheduled maintenance will be able to be integrated with the Council's Asset Management Information System in 2021, so that the recorded data can be better linked to the specific assets being tested.

Currently little active maintenance is carried out on the reticulated network. The CCTV programme now under way will provide information as to whether more active maintenance is required.

Figure 5 shows the projected Operations and Maintenance budget over the next 30 years.

Systems are not yet in place to capture the cost distinction between planned and unplanned maintenance, and while there is no known deferred maintenance, the CCTV programme may reveal asset condition in some pipes to be less than what has been assumed.

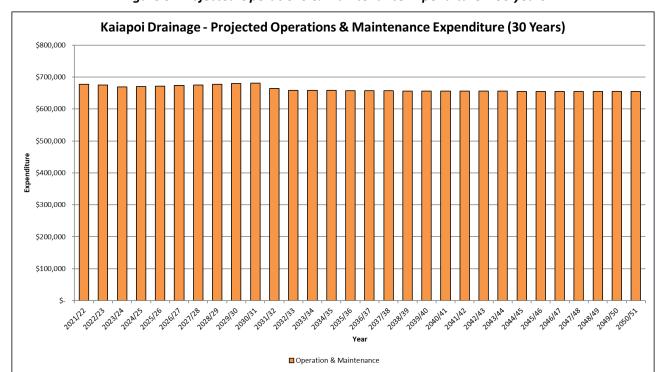


Figure 5: Projected Operations & Maintenance Expenditure – 30 years

6.2 Renewals Programme

Much of the stormwater reticulation is of relatively recent origin and expected to be still in good condition. However, most pump station components are of similar age as the reticulation, but have a much shorter life than the pipes and structures. Many of these components are overdue for renewal, or are expected to require renewal within the next 20 years. An annual allowance of \$50,000 has been made to progressively renew these components, in addition to other equipment known to be in poor condition.

The renewals programme is determined in two stages. The renewals model, details of which are provided in the overview document, provides a long term view of the income required to ensure that a renewals fund is sufficient to enable future asset renewals, without needing to borrow.

The model prioritises candidates for consideration by Asset Managers for renewal based on criticality, risk, and expected asset life. Renewal of pipework assets are then programmed on an annual basis, taking into account the outputs from the renewals model, but also being informed by other works that may be planned in the area, as well as local asset history for the cases where a particular asset may be performing differently than its base life suggests.

The planned renewals for this scheme, which are the outcome from this two stage process, are shown spatially and temporally in Figure 6 below.

Figure 6: Pipe Renewal Time Frames

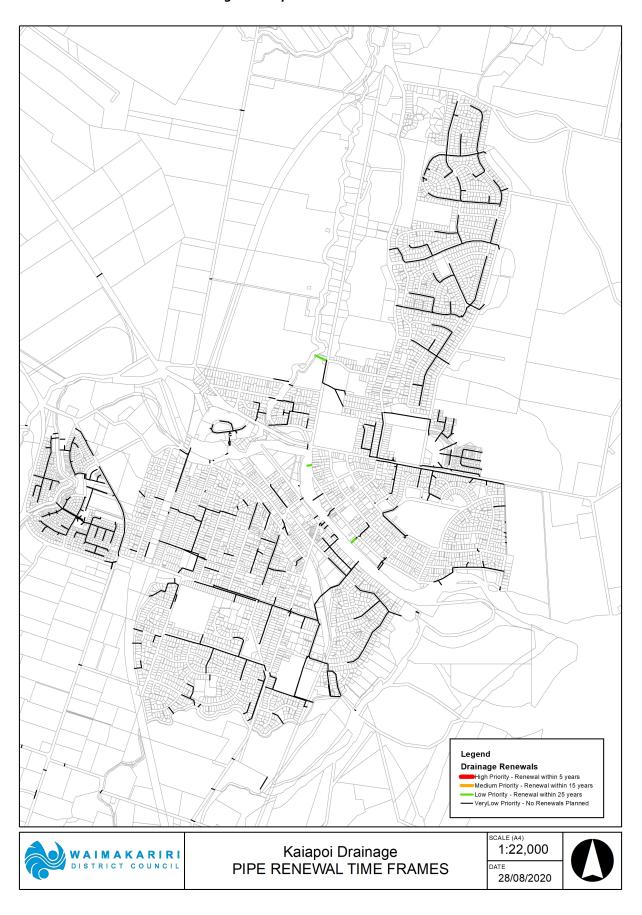


Figure 7 below shows the financial output from the model alone. Over a 150 year period it shows the projected expenditure; the value in the renewals fund; the level of funding required to ensure the fund can meet the required renewals programme, and the annual depreciation.

The figure only shows the output from the model, so expenditure shown in the graph for the first ten years may be different from the expenditure shown in the LTP, as adjustments may have been made by the Asset Manager from the direct renewals model outputs. Individual scheme AMPs detail the actual planned renewals budgets for the first ten years.

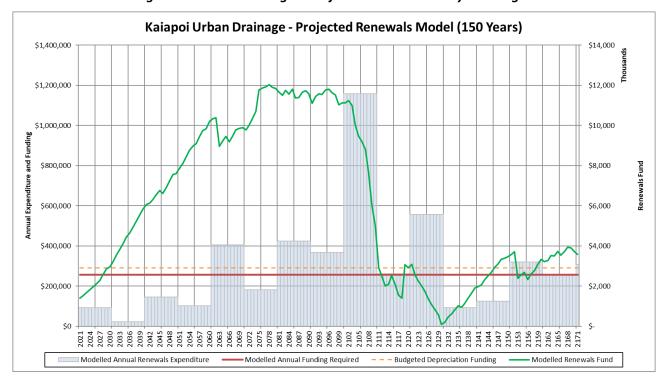


Figure 7: Annual Drainage – Projected Renewals 150 year Budget

The key parameters in the figure above are explained below:

- Modelled Annual Renewals Expenditure: This is the direct output from the renewals model, recommending the annual investment to be made in renewals each year.
- Modelled Annual Funding Required: This is the amount of annual renewals funding required, to ensure there are sufficient funds available to carry out the recommended annual renewals each year.
- Budgeted Depreciation Funding: This is the actual amount of depreciation being collected, which is extracted from the Council's budgets.
- Modelled Renewals Fund: This is the modelled balance in the renewals account, assuming the annual funding and annual expenditure is completed as per the recommendations from the renewals model. As can be seen, this account is maintained as a surplus, peaking later this century, before being drawn down as the first lifecycle of current assets is completed.

As may be seen with the budgeted depreciation being higher than the modelled annual funding required, future renewals are fully funded.

6.3 **Capital Works**

The following graph shows the 50 year budget for all capital works, including projects driven by growth and levels of service (Figure 8). It does not show flood improvement works expenditure funded either by the district drainage rate, or the government's "shovel ready" programme.

The purpose of these works is to address existing deficiencies and risks, cater for growth, achieve Level of Service targets such as in-channel efficiencies, water quality treatment, attenuation (where possible), and improvement of wildlife habitat.

Budget allowance has also been made starting in 2026/27 for meeting the requirements of the global stormwater discharge consents, although the conditions of these are not yet known.

The spike of expenditure in 2021/22 relates to payment to a developer for construction of the SMA and outfall pipework for the Silverstream, east of Island Rd development.

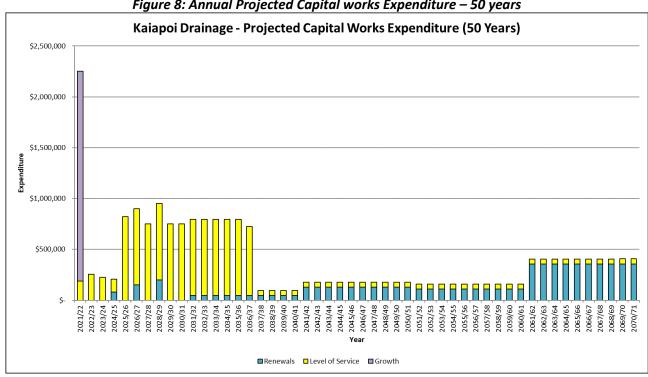


Figure 8: Annual Projected Capital works Expenditure – 50 years

Table 13 shows planned capital works over the next 50 years, including renewals, but excludes flood improvement works.

The level of confidence in the budget for the works (High / Medium / Low) is presented in Table 8. For a more complete discussion on the level of optimisation, refer to the introductory chapter of the AMP. The figures in the table are not adjusted for inflation.

Any programme or project that occurs over a number of years, such as the renewals programme, is only shown within the table for the first year in which it occurs. The Project Value indicates the projected total cost of the project over the number of years it occurs.

Table 13: Summary of Capital Works (Includes Renewals)

Year	Project ID	Project Name Level of Confidence Confidence Component Component		Renewals Component	Growth Component		
Year 1 - 10							
2022	URD0061	Underchannel piping	5 - Medium	\$ 1,000,000	\$ 1,000,000	\$ -	\$ -
2022	URD0062	Stormwater Minor Improvements	1 - Coarse	\$ 1,500,000	\$ 1,500,000	\$ -	\$ -
2022	URD0071	Silverstream - East of Island - SMA & Land Purchase	3 - Low	\$ 2,062,500	\$ -	\$ -	\$ 2,062,500
2022	URD0108	Kiln Place Upgrade	5 - Medium	\$ 120,000	\$ 120,000	\$ -	\$ -
2022	URD0129	Beswick SW Pump Station Modification	3 - Low	\$ 200,000	\$ 200,000	\$ -	\$ -
2023	URD0131	Ranfurly Street Pipe Upgrade	3 - Low	\$ 200,000	\$ 200,000	\$ -	\$ -
2025	URD0059	Kaiapoi Drainage Long Term Headworks Renewals	3 - Low	\$ 2,532,220	\$ -	\$ 2,532,220	\$ -
2025	URD0128	Sunday School Drain Piping	3 - Low	\$ 225,000	\$ 225,000	\$ -	\$ -
2025	URD0130	Mansfield Park Secondary Flow Improvements	1 - Coarse	\$ 550,000	\$ 550,000	\$ -	\$ -
2026	URD0070	Network Discharge Consent Implementation Works	1 - Coarse	\$ 7,700,000	\$ 7,700,000	\$ -	\$ -
Year 11 - 20							
2032	URD0060	Kaiapoi Drainage Long Term Reticulation Renewals	3 - Low	\$ 4,272,756	\$ -	\$ 4,272,755	\$ -
Grand Total				\$ 20,362,475	\$ 11,495,000	\$ 6,804,975	\$ 2,062,500

Note: the Renewals item indicates the total renewals programme value for the 50 years beginning 2021/22.

Flood Improvements Programme

There is a suite of Kaiapoi flood improvement projects which are joint funded by the government "shovel ready" programme, Kaiapoi scheme rates, and the District drainage rates. The funding division is shown in the table below

Funding Source	Amount
Shovel Ready Fund	\$9,000,000
Kaiapoi Urban Drainage (LOS)	\$6,204,000
Kaiapoi Urban Drainage (Renewal)	\$483,500
Kaiapoi Urban Drainage (Growth)	\$1,400,000
District Drainage (LOS)	\$1,042,500
Total	\$18,130,000

Note that the growth portion of the work is to be funded from development contributions from development areas within the catchment which will benefit from the work.

The work is starting in FY 2020/21, and for the construction period of 2021/22 to 2022/23, when the work will be completed. Budgeted funds have been transferred across to a special "shovel ready" budget. Individual projects from this budget are shown below in Table 14.

There has been a reasonably lengthy period of investigative work, and optioneering reports associated with flooding issues on both sides of the Kaiapoi river. The history and final recommendations that went to the "shovel ready" project team put together to deliver the projects is recorded in the following documents:

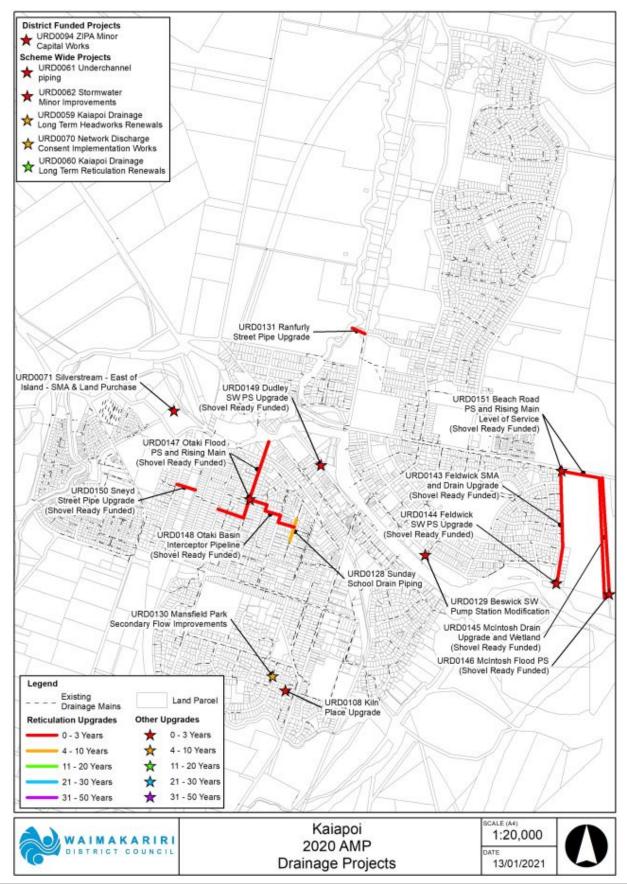

- Kaiapoi Stormwater and Flooding Improvements Options report (Trim 200917123563)
- Dudley Drain Investigation History (TRIM 200610069026)
- McIntosh's catchment optioneering and historical investigation reports
 - o (TRIM 201008134174)
 - o (TRIM 141010111221)
 - o (TRIM 120921064454)
 - o (TRIM 080311007513

Table 14: Summary of "Shovel Ready" funded capital works

Veer	Duningt ID	Duois et Nome	Level of	0.	voicet Value	100	Campanant	Renewals Component		_	Growth
Year	Project ID	Project Name	Confidence	PI	roject Value	LUS	Component	Com	ponent	Component	
Year 1 - 10											
2022	URD0143	Feldwick SMA and Drain Upgrade	0	\$	335,000	\$	335,000	\$	-	\$	-
2022	URD0144	Feldwick SW PS UPgrade	0	\$	255,000	\$	255,000	\$	-	\$	-
2022	URD0145	McIntosh Drain Upgrade and Wetland	0	\$	1,970,000	\$	1,265,000	\$	-	\$	705,000
2022	URD0146	McIntosh Flood PS	0	\$	2,020,000	\$	1,325,000	\$	-	\$	695,000
2022	URD0147	Otaki Flood PS and Rising Main	0	\$	2,800,000	\$	2,800,000	\$	-	\$	-
2022	URD0148	Otaki Basin Interceptor Pipeline	0	\$	2,410,000	\$	2,410,000	\$	-	\$	-
2022	URD0149	Dudley SW PS Upgrade	0	\$	255,000	\$	255,000	\$	-	\$	-
2022	URD0150	Sneyd Street Pipe Upgrade	0	\$	50,000	\$	50,000	\$	-	\$	-
2022	URD0151	Beach Road PS and Rising Main Level of Service	0	\$	2,715,000	\$	2,715,000	\$	-	\$	-
2022	URD0152	Shovel Ready - Detailed Design	0	\$	130,000	\$	130,000	\$	-	\$	-
2022	URD0153	Shovel Ready - Contingency Capex	0	\$	1,800,000	\$	1,800,000	\$	-	\$	-
2022	URD0154	Shovel Ready Programme MGMT - Capex	0	\$	323,000	\$	323,000	\$	-	\$	-
Grand Total				\$	15,063,000	\$	13,663,000	\$	-	\$	1,400,000

Figure 9: Projected Capital Upgrade Works (not to scale)

Includes works funded through the "Shovel Ready" grant

6.4 Financial Projections

The following graph summarises the breakdown of projected total expenditure over a 30 year time horizon. It includes operational and part only of capital expenditure. Operational costs include operations and maintenance, and indirect expenditure.

Indirect expenditure includes interest, rating collection costs, costs associated with maintaining the Asset Register, and internal overhead costs.

Capital includes expenditure for growth, levels of service and renewals (including carry forwards), but excludes flood improvement projects funded from the various sources.

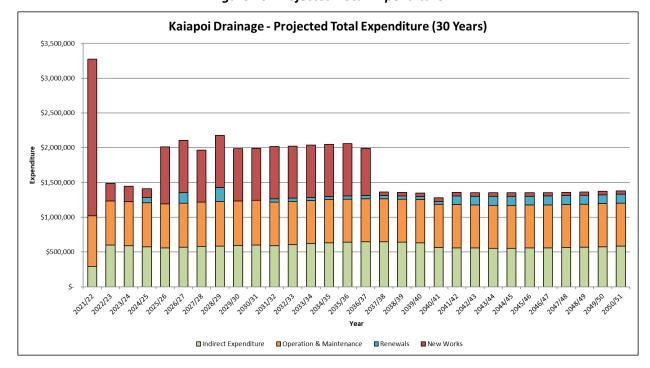


Figure 10: Projected Total Expenditure

6.5 Valuation

A full peer reviewed valuation of assets is carried out on a three yearly cycle, using the asset data in our asset management information system. Table 15 below provides a summary of the replacement cost, depreciated replacement cost and annual depreciation for this scheme

Table 15: Asset Valuation

Asset Type	Unit	Quantity	Replacement Cost	Depreciated Replacement Cost	Annual Depreciation
Manhole	No.	701	\$6,857,056	\$6,857,056 \$5,944,470	
Sump	No.	45	\$96,398 \$62,156		\$964
Valve	No.	40	\$240,584	\$161,406	\$2,406
Network Main	m	37,052	\$31,139,539	\$25,486,449	\$311,920
Open Channel	m	6,883	\$212,779	\$212,779	\$-
	Facilities		\$6,393,233	\$5,389,144	\$60,400
	Total		\$44,939,589	\$37,256,405	\$444,261

6.6 Revenue Sources

Revenue is provided from a number of sources, some specific to the current Covid-19 situation: targeted rates, district wide rates, "shovel ready" funding and Development Contributions. Development contributions are calculated in accordance with Council's Development Contributions Policy (TRIM 191129168016), while targeted rates and district wide rates are charged in accordance with Council's Revenue and Financing Policy (TRIM 180522056008).

7 Improvement Plan

7.1 2021 Improvement Plan

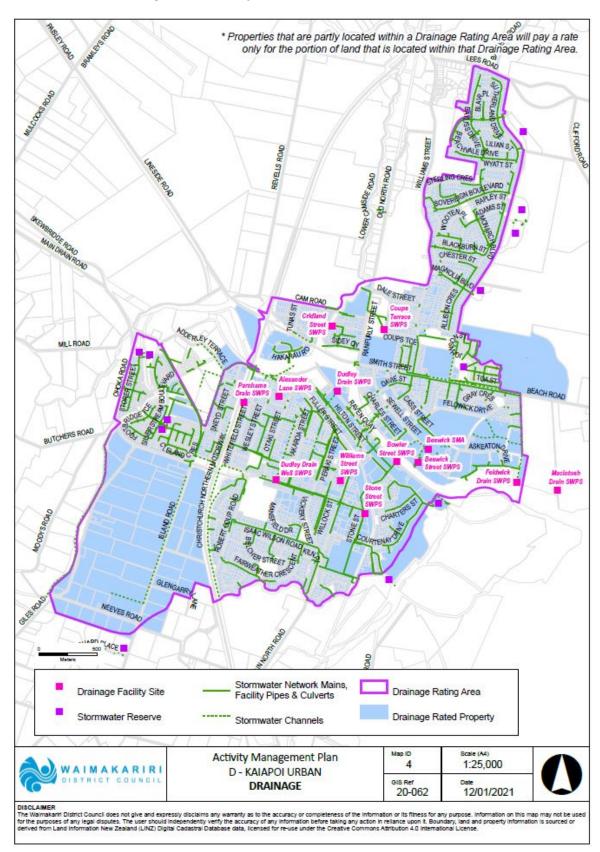

Table 16 details the scheme specific improvements and relevant district wide improvements recommended to address the management issues identified in Section 3. Each improvement item has been tagged to either a capital project or, a process improvement project to help manage and track Councils response.

Table 16: 2021 AMP Improvement Plan

Project Ref	AMP Section	Project Description	Priority	Status	Estimated Cost
IP050	Levels of Service	Dwelling floor level surveys Kaiapoi and Rangiora (Phase 1 scoping only)	Medium	Planned for 2024	\$7,200
IP052	Levels of Service	Define CBD areas, as these feed into Level of Service reporting.	High	Planned for 2021	No budget required, done using in-house resources

PLANS

Figure 11: Plan of Serviced Area as at November 2017

