

PRELIMINARY AND DETAILED SITE INVESTIGATION TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT, WAIMAKARIRI, RANGIORA

Engineers and Geologists

RILEY CONSULTANTS LTD New Zealand Email: riley@riley.co.nz Email: rileychch@riley.co.nz Web: www.riley.co.nz AUCKLAND

4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873 CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

PRELIMINARY AND DETAILED SITE INVESTIGATION TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT WAIMAKARIRI, RANGIORA

Report prepared for:

Summerset Villages (Rangiora) Limited

Report prepared by:

Chloe Cameron, Engineering Geologist

non

Report reviewed by:

Marcus Herrmann, Principal - Contaminated Land

Marayberminn

Report approved for issue by:

Brett Black, Director, CPEng

.

Report reference:

170743-B

Date:

Copies to:

15 October 2019

Summerset Villages (Rangiora) Limited

1 electronic copy

Riley Consultants Ltd

1 copy

Issue:	Details:	Date:
1.0	Preliminary and Detailed Site Investigation	1 February 2019
2.0	Preliminary and Detailed Site Investigation (Boundary Readjustment)	7 August 2019
3.0	Preliminary and Detailed Site Investigation (Plan Change)	20 September 2019
4.0	Preliminary and Detailed Site Investigation (Plan Change)	15 October 2019

Contents

1.0	Introduction	. 1
1.1	Summary	. 1
2.0	Site Description, Location and Current Land Use	. 2
2.1	Proposed Development	. 3
3.0	Geology and Hydrogeology	. 3
4.0	Preliminary Site Investigation	. 3
4.1	Historic Aerial Photographs	. 4
4.2	Waimakariri District Council Property Files	. 5
4.3	Environment Canterbury Listed Land Use Register	. 6
4.4	Previous Site Investigations	. 6
4.5	Site Walkover and Interview	. 7
4.6	HAIL Activities and PSI Conclusion	. 8
5.0	Detailed Site Investigation	. 9
5.1	Sampling Methodology	. 9
6.0	Laboratory Testing and Acceptance Criteria	10
6.1	Data Quality	10
6.2	Risk Assessment	11
6.3	Results	11
6.	3.1 Heavy Metals	11
6.	3.2 Asbestos (presence/absence)	11
6.	3.3 TPH and BTEX	11
6.	3.4 Polycyclic Aromatic Hydrocarbons	12
6.	3.5 Organochlorine Pesticides	12
7.0	Conceptual Site Model	13
8.0	Regulatory Implications	13
8.1	NES-CS	13
8.2	Environmental Implications	14
9.0	Soil Reuse and Disposal Options	14
10.0	Conclusion and Recommendations	15
11.0	Limitation	16

Appendices

Appendix A: Historic Aerial Photographs

Appendix B: Listed Land Use Register

Appendix C: Site Photographs Appendix D: Test Pit Logs

Appendix E: Results Table

Appendix F: Laboratory Transcripts

Appendix G: RILEY Dwg: 170743-2

RILEY CONSULTANTS LTD New Zealand Email: riley@riley.co.nz Email: rileychch@riley.co.nz Web: www.riley.co.nz AUCKLAND

4 Fred Thomas Drive, Takapuna, Auckland 0622 PO Box 100253, North Shore, Auckland 0745 Tel: +64 9 489 7872 Fax: +64 9 489 7873 CHRISTCHURCH 22 Moorhouse Avenue, Addington, Christchurch 8011 PO Box 4355, Christchurch 8140 Tel: +64 3 379 4402 Fax: +64 3 379 4403

PRELIMINARY AND DETAILED SITE INVESTIGATION TO SUPPORT PROPOSED PLAN CHANGE 104 TOWNSEND ROAD AND 141 SOUTH BELT WAIMAKARIRI, RANGIORA

1.0 Introduction

Riley Consultants Ltd (RILEY) has been engaged by Summerset Villages (Rangiora) Limited to undertake a Preliminary and Detailed Site Investigation (PSI/DSI) on a 13.83ha greenfield site, located in south-west Rangiora at 104 Townsend Road and 141 South Belt.

This is an update of our previous PSI/DSI (RILEY Ref. 170743-B, 7 August 2019) which was prepared in support of a boundary readjustment for the site. This report has been prepared to support a private plan change to amend parts of the Waimakariri District Plan (WDP) pursuant to Section 73(2) and Clauses 21(1) and 22 of the First Schedule to the Resource Management Act 1991 (RMA).

A PSI/DSI was necessary to assess the potential for on-site soil contamination, as the proposed plan change will enable more intensive residential use of the land and thus requires consideration in accordance with the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES-CS).

This report has been reviewed by a suitably qualified and experienced practitioner in contaminated land as required by the NES-CS. This report meets the general requirements of a Preliminary Site Investigation (PSI) and Detailed Site Investigation (DSI) in accordance with the Ministry for the Environment (MfE)'s Contaminated Land Management Guidelines (CLMG) No. 1: Reporting on Contaminated Sites in New Zealand (revised 2011), the MfE's CLMG No. 5: Site Investigation and Management of Soils (revised 2011) and the NES-CS.

1.1 Summary

Key outcomes from this report are as follows:

- Samples tested across the site contained heavy metals (mainly lead, chromium and zinc) at concentrations greater than regional background criteria.
- Apart from one minor lead exceedance, no sampling results across the site were found to exceed relevant human health or ecological protection criteria.
- A Restricted Discretionary Activity resource consent will be required to be applied for under the NES-CS prior to future site development works. The NES-CS consent status will reduce to Controlled Activity if a retirement village rather than residential end-use is intended.
- Subject to remediation or management of a small area of the site and in accordance with a development-specific Site Management Plan (SMP) for the site, all land subject to the plan change is considered to be suitable for residential development and use, based on testing information to date.

2.0 Site Description, Location and Current Land Use

The property is located on the corner of Townsend Road and South Belt, within a flat-lying rural area in the town of Rangiora, approximately 29km north of Christchurch Central Business District. The is legally described as (shown in Figure 1 below):

• Lot 1 DP 45826 and Lot 3 DP 73557.

Figure 1: Plan Change Site Location

Legal Lot boundaries are shown on RILEY Dwg: 170743-2 (Appendix G).

The site is located in the south-western area of Rangiora township, with the northern site boundary adjoining South Belt, and Townsend Road adjoining the western boundary. East of the site is Southbrook Park, and the southern boundary adjoins Southbrook Stream (which flows west to east). The site slopes down very gently from the north-west to south-east.

The majority of the site area is currently grassed, with a horse training track present at the northern end, adjacent to South Belt. There are two dwellings and numerous farm buildings located in the north-western corner of the site.

Medium density residential property is located to the north of the site, and a substantial new residential subdivision known as Townsend Fields is currently under construction to the north-west of the site. Southbrook Park is located to the east of the site, with the remainder of the site is bounded by rural land. Vehicle access to the site is via two access points; one on the western boundary from Townsend Road and one from South Belt.

Contours derived from publicly available Light Detection and Ranging (LiDAR) data (September 2011) indicate a maximum ground surface elevation of approximately RL 26.0m at the north-western boundary and a minimum elevation of approximately RL 22.0m at the south-eastern boundary (Lyttelton Vertical Datum).

From a development perspective, the site is located within an area designated by the Waimakariri District Council (WDC) Planning Map as Residential 4B. However, it is proposed to change the zoning of the land to Residential 2 which would enable typical residential dwellings to be constructed on the site.

2.1 Proposed Development

With reference to the WDP, the site is currently zoned Residential 4B. It is proposed to change the zoning of the land to Residential 2 zone which would enable typical residential sections and dwellings to be constructed on the site. It is also proposed to incorporate within the zone some specific rules to provide for the construction of a retirement village. This would result in allowing a retirement village to be constructed on all or part of the site, or all or part of the site to be developed for typical residential dwellings (in accordance with the Residential 2 zone rules).

In its current status (Residential 4B), the site can be developed into approximately 13 sections comprising lifestyle blocks with dwellings. The proposed new provisions for the Residential 2 zone will allow for up to 150 sections (and dwellings).

The proposed plan change will enable residential and high-density residential land uses. Soil testing results will therefore be assessed against these health-based soil contaminant standards, in addition to outdoor worker (unpaved) land use during works, environmental discharge criteria and regional background concentrations (please refer to Section 6.2 of this report).

3.0 Geology and Hydrogeology

The published geological map of the area as described in the Institute of Geological and Nuclear Science (GNS) geological QMAP for the area (Geology of the Christchurch Urban Area, 1:250,000 Geological Maps, 2008), indicates the site has surface geology consisting of dominantly alluvial river deposits (brownish-grey river alluvium) belonging to the Yaldhurst Member of the Springston Formation.

A review of the contours of depth to groundwater in metres below ground level (m bgl) presented by Canterbury Maps, indicates the unconfined groundwater table is expected to be encountered between 1.0m and 2.5m bgl across the site. A total of 15 groundwater wells were identified on the Environment Canterbury (ECan) Geographic Information System (GIS) database as being located within a 500m radius of the property.

4.0 **Preliminary Site Investigation**

A PSI was undertaken by RILEY to assess the potential risk of soil contamination relating to past and current activities carried out on-site in accordance with the Ministry for the Environment's Contaminated Land Management Guidelines No. 1 (MfE CLMG No. 1): Reporting on contaminated sites in New Zealand (revised 2011), and the NES-CS.

The PSI includes the following:

- Review of historic aerial photographs;
- ECan Listed Land Use Register (LLUR) check;
- Search and review of WDC property files and previous site investigations;
- Site walkover.

Page 4

4.1 Historic Aerial Photographs

As part of the investigation, historic aerial photographs for the site have been reviewed from 1940 to 2015 using the ECan online GIS database. A summary of the aerial photograph search is provided below. All images have been included within Appendix A.

1940 to 1944:

- The majority of the site is rural grassed farmland, with shelterbelts and paddocks which are similar to today's land use (neighbouring land is currently farmland).
- The initial buildings appear to comprise a farmhouse, pig pens, a barn, and several smaller sheds.
- The Southbrook Stream, located along the southern property boundary, meanders significantly more than today: i.e. the watercourse has been straightened over time.

1945 to 1959:

• There are no historic aerial photographs available for the site.

1960 to 1964:

- Several of the abovementioned buildings and the pig pens located in the north-western corner of the site appear to have been removed.
- Several sheds and barns, and a steel-trussed chicken cage building (measuring approximately 70m in length and 5m in width) have been constructed in the north-western corner of the site.
- A driveway has been formed in the north-western corner of the site, providing access to South Belt.

1965 to 1969:

• A second steel-trussed chicken cage building has been constructed in the north-western corner of the site, adjacent to the existing chicken cage building. The two poultry sheds cover an area of approximately 900m².

1970 to 1989:

• A dirt horse track is now visible on the north-east part of the site with associated horse stalls nearby.

1990 to 1999:

- A second (smaller) dirt horse track is now visible inside the existing (larger) track at the northern end of the site.
- A residential dwelling has been constructed at the western end of the site, with a driveway providing access to Townsend Road.

2000 to 2010:

• Several horse stables, a shed, a barn, two residential dwellings and a large horse racecourse have now been established in the northern half of the site.

- A large shed (possibly used for packing/cooling) is located in the north-western end of the site. One of the two steel-trussed chicken cage buildings appears to have been removed.
- Most of the land appears to be being used for grazing horses, cattle and sheep.
- The land adjacent to the northern property boundary has been partially developed as a residential subdivision. No further significant change in land use is identified.

2010 to 2015:

- Both chicken cage buildings have now been removed. Concrete from the eastern shed remains.
- A burn pad appears to be present between the residential dwelling of 104 Townsend Road and the Southbrook between March 2010 and January 2011.
- A stockpile¹ is visible on the left bank of the watercourse.
- Most of the land still appears to be being used for grazing horses, cattle and sheep.
- Ongoing residential development is occurring on the land adjacent to the northern property boundary.

4.2 Waimakariri District Council Property Files

The property files for the subject site were obtained from the WDC in January 2019. The files comprise the following documents:

- Ground Contamination Assessment, 141 South Belt and 104 Townsend Road, Rangiora (Eliot Sinclair & Partners Ltd, 15 October 2014);
- Infrastructure Servicing Assessment, 141 South Belt and 104 Townsend Road, Rangiora (Eliot Sinclair & Partners Ltd, October 2014);
- Correspondence with WDC regarding drainage, survey and land development proposals;
- Consent application documents and construction details for buildings and heating appliances.

A review of the files indicates a ground contamination assessment was undertaken by Eliot Sinclair & Partners Ltd (Eliot Sinclair) on 15 October 2014, in association with an application for a plan change, which would have resulted in a change in the land use from farmland to residential on the area between South Belt Road and the Southbrook River.

In summary, the Eliot Sinclair PSI identified caged chicken farming and a burn pad on-site. Consequently, a DSI was carried out by Eliot Sinclair targeting these two activities. Surficial soils in both these areas were tested for arsenic and heavy metals, with additional PAH² testing carried out for the burn pad and OCP³ testing carried out for the caged chicken operation.

¹ The Eliot Sinclair ground contamination report identifies that this stockpile comprises excavation material from the Southbrook.

² Polycyclic aromatic hydrocarbons.

³ Organochlorine pesticides.

- Results for the former caged chicken area showed arsenic, chromium and lead concentrations above regional background levels but below the NES-CS soil contaminant standard for residential land use (10% produce). Two low-level total DDT detects were also identified here. No remedial or management actions were recommended nor taken for this area.
- Results for the burn pad showed arsenic, chromium, copper and lead above regional background levels. One arsenic sample exceeded the relevant NES-CS soil contaminant standard (residential, 10% produce).

The report states that two sequences of removal/disposal of surface soils, each followed by validation testing programmes (July and September 2014) were undertaken thereafter, with contaminated soils disposed to the Kate Valley landfill. The final validation sampling regime from the remediated area confirmed that the concentration of arsenic was now below the relevant NES-CS soil contaminant standard, and that the land was considered suitable for residential zoning.

4.3 Environment Canterbury Listed Land Use Register

An online search of ECan's LLUR has been undertaken as part of the PSI. The LLUR is a database containing contaminated and potentially contaminated sites where hazardous activities as detailed in the MfE's Hazardous Activities and Industries List (HAIL) have been identified by ECan to have occurred or to be currently occurring in the Canterbury region.

A review of ECan's LLUR indicates the site is registered as a HAIL site, specifically *Category A10 - Persistent pesticide bulk storage or use*. Furthermore, a land parcel located approximately 500m south-east (downgradient) of the site is recorded on the LLUR as having historical and current timber treatment and/or preservation and bulk storage of timber. RILEY considers that potential ground contamination from the timber treatment site is highly unlikely to have impacted soils at the subject site.

4.4 Previous Site Investigations

As noted in Section 4.2, a limited DSI was undertaken by Eliot Sinclair on 15 October 2014 to support a proposed plan change. Soil types encountered in the upper layers were generally consistent across the site, comprising shallow topsoil to a maximum depth of 0.5m bgl, underlain by alluvium comprising clayey silt and sandy clayey silt to between 0.9m and 2m depth, in turn underlain by silty and sandy gravels where deeper testing with hand equipment became impractical.

Additionally, a geotechnical investigation was undertaken by RILEY and McMillan Drilling Limited (overviewed by RILEY) between 17 December and 21 December 2018, comprising a site walkover, buried services clearance check and completion of 29 subsurface tests. Subsurface investigations confirmed the presence of a surficial layer of topsoil, underlain by Quaternary aged alluvial river deposits belonging to the Yaldhurst Member of the Springston Formation across the site, comprising silt and clay mixtures to between 0.45m and 1.7m depth, in turn underlain by silty sandy gravel from between 0.45m and 1.7m bgl to a depth of at least 15.2m bgl. Fill was encountered within one of the shallow tests from between 0.2m and 0.4m depth and comprised dark brown (mottled) organic silt with trace gravel and rootlets.

Page 7

4.5 Site Walkover and Interview

A review by RILEY of the report "Ground Contamination Assessment, 141 South Belt and 104 Townsend Road, Rangiora (Eliot Sinclair & Partners Ltd, 15 October 2014)", which was prepared for an earlier residential plan change application, indicates an interview with Mr Clarke (current owner) was undertaken during the site inspection. The information from the site inspection and interview is summarised as follows:

- Mrs Clarke's father bought the land around 1946 from the previous farmer.
- In 2014, the land was then being used to graze approximately 30 horses, ten cattle and less than ten sheep. No goods are produced on the farm.
- Previous land uses (approximately 40-years ago) comprised cattle, horses, pig and chicken farming.
- A historical farm pit was situated on a now neighbouring parcel south-east of the site (Lot 2 DP73557). This land has been sold to WDC, and subsequent to the sale three stormwater detention and treatment ponds have been constructed.
- Silt and gravel were stockpiled on the true left bank of the Southbrook in 2011. The material is from deepening and straightening the watercourse.
- In 2014, horse manure and sawdust were stockpiled behind a horse stable. The material is regularly removed by a Rangiora Landscaping company and used for gardening.
- Mr Clarke stated that the farm was run on a low budget and grass grub was not treated in the 1960s and 1970s.
- Spraying (from 2014 onwards) is undertaken by a registered sprayer who also works for council and occurs mostly along the Southbrook.
- Mr Clarke advised that no friable asbestos or cement fibreboards in deteriorated condition were noticed on farm buildings during the 2014 site inspection.
- A burn pad is situated between the existing residential dwelling at 104 Townsend Road and the Southbrook.
- An above-ground storage tank (AST) is located amongst the horse stables. The tank was used to store diesel but has not been used for many years. The soil under the tank is densely vegetated with grass. No hydrocarbon stains were visible at the time of inspection.
- The two residential dwellings are serviced by septic wastewater systems.
- Two steel-trussed chicken cage buildings were located in the north-western part of the site and operated between 1965 and 1974. The buildings were constructed with steel frames and roofs but no walls, and the floor was unsealed, apart from two concrete strips to access the caged chicken.
- No bulk-storage of chemicals was identified on the land. Chemicals from the poultry operation were probably stored in the adjacent packing and cooling shed on concrete floor.

Additionally, a site walkover was undertaken by RILEY staff on 17 December 2018. The findings of the walkover have been summarised below, and the site photographs are appended (Appendix C).

• Sawdust has been imported to site and stockpiled next to a shed for use in the horse stables.

- Horse manure has been stockpiled next to horse stables.
- The AST has been moved from its original location and was not identified elsewhere on the site.
- A 3m diameter hole is present next to shed possibly formerly utilised as a sump or septic tank.
- Two burn pads are present near the existing home/sheds one larger (previously referenced in this report), and a smaller one: both have been used recently.
- An underground sewer main crosses site from north to south-east. Three on-site manholes indicate its approximate location. Signs of ground disturbance were observed near the south-east alignment.
- Approximately 20 sheep/lambs are grazing near the existing dwelling and approximately 12 horses are also visible on-site. No other animals (e.g. cattle, chickens) were observed at the time of inspection.
- No cropping is present on the site. Several patches of cracked bare earth were observed inside the horse training track, however, most of the site is pastureland with thistles and other weeds.
- The horse training track is used daily; machinery on-site to grade the track was visible.
- Southbrook flows along south boundary of site (west to east), flowing approximately 1 cumec at the time of assessment. The brook appears to have been straightened.

No further land uses or activities were observed during the site visits by Eliot Sinclair (2014) and RILEY (2018) that raised concerns regarding potential soil contaminant risks to human health or the environment.

4.6 HAIL Activities and PSI Conclusion

Based on a review of the historical aerial photographs, council files and the aforementioned on-site observations, RILEY considers that several HAIL activities have been identified to have occurred on-site which have not been previously addressed in the ground contamination assessment undertaken by Eliot Sinclair in 2014.

Potential contaminants and sources are presented below in Table 1.

Activity	Potential Contaminants	Likelihood of Contamination	HAIL Reference
Above-Ground Storage Tank (AST) • Heavy metals • Petroleum hydrocarbon contamination		Likely to occur via tank failure, poor maintenance or dispensing problems. The proposed development works would include ground disturbance and potential exposure of construction workers and future site end users to contaminants. This would complete a source-pathway-receptor link.	Activity A2: Chemical manufacture, application or bulk storage.
Construction and demolition of farm buildings with potential asbestos-containing materials or lead-based paintsLikely to oc buildings (p lead-based removed/de the building becomes fla falls off. Th developmen include group potential ex construction site end-us This would source-path		Likely to occur when older buildings (painted with lead-based paint) have being removed/demolished or when the building deteriorates (paint becomes flaky or powdery) and falls off. The proposed development works would include ground disturbance and potential exposure of construction workers and future site end-users to contaminants. This would complete a source-pathway-receptor link.	Activity I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment.
Burn Pads • Asbestos		Likely to occur if the buildings/materials incinerated had asbestos containing materials. The proposed development works would include ground disturbance and potential exposure of construction workers and future site end-users to contaminants. This would complete a source-pathway-receptor link.	Activity I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment.

Table 1:	Potential	Contamination	Sources

A DSI is required to quantify the risks to construction workers and site end-users, as well as to assess the consenting activity status of ground disturbance associated with future development.

5.0 Detailed Site Investigation

A DSI was undertaken by RILEY on 17 December 2018, following the PSI. A total of 33 test locations (HA1 to HA23, BP1 to BP3, FT1 and HA-BH1 to HA-BH6) were hand excavated to visually assess the encountered material and to collect soil samples for analysis. The test locations are shown on RILEY Dwg: 170743-2 (Appendix G).

5.1 Sampling Methodology

Soil sampling was undertaken in accordance with the MfE's CLMG No. 5: Site Investigation and Management of Soils (revised 2011).

Soil samples for analytical testing were collected according to the following procedure:

- Test locations were evenly spread across the site (within both the proposed development area and the balance land), including around the three burn pad areas and beneath where the AST was once located.
- Soil samples were collected within the near surface topsoil material (0m to 0.2m depth), and within natural soils at approximately 0.5m and 1m depth, where applicable.
- Standard sampling procedures such as changing gloves and decontamination of • sampling equipment (hand auger) were observed.
- Samples were placed directly into glass jars, supplied by the laboratory (such that no • headspace remained in the jar), and were sealed, labelled and placed in a non-transparent, chilly-bin filled with ice.
- Chain of custody documentation detailing the sample handling, transport procedures from the point of collection at the site to the laboratory, and instructions for the laboratory analysis was then completed and sent with the samples to the laboratory (via same-day courier).
- For most of the test locations, only the top two samples undertaken within topsoil at • approximately 0.2m bgl and natural soil at approximately 0.5m bgl, were analysed initially, and it was proposed that if guideline values were exceeded, testing of the underlying natural soils, undertaken at approximately 1m bgl, would then be carried out.

Sampling locations are shown on RILEY Dwg: 170743-2 (Appendix G). All test locations across the site encountered topsoil to a maximum depth of 0.35m bgl, underlain by natural material.

All soil samples were logged on-site by a qualified engineering geologist in general accordance with the New Zealand Geotechnical Society Guidelines. The co-ordinates for all test locations were marked using a hand-held GPS.

The test logs from the on-site sample locations are presented in Appendix D and are representative of material encountered across the site. There were no signs of visual or olfactory contamination in any of the samples taken.

6.0 Laboratory Testing and Acceptance Criteria

A total of 70 soil samples were taken across the site. Of the 70 samples, 64 were analysed for heavy metals (arsenic, cadmium, chromium, copper, nickel, lead and zinc) and organochlorine pesticides (OCP); 62 samples were tested for polycyclic aromatic hydrocarbons (PAH). Additionally, two samples were tested for BTEX (benzene/toluene/ethylbenzene/xylene), and 21 samples were tested for asbestos (presence/absence).

The analytical results are discussed in Section 6.3 below, and are presented in Appendix E. The full laboratory transcripts are presented in Appendix F.

6.1 Data Quality

A quality assurance and quality control (QA/QC) programme was implemented as part of field procedures to confirm that the soil analytical data was fit for purpose. The programme included:

- Transportation of samples with accompanying chain of custody documentation. •
- Laboratory testing by an IANZ-accredited laboratory. •
- Comparison of field and analytical data.
- Compliance with sample holding times. •

Laboratory QA/QC reports are available on request.

6.2 Risk Assessment

For the purposes of this report, a Tier 1 risk assessment was carried out by comparing the concentrations of the contaminants of concern against the following criteria:

- 1. Background Concentrations: ECan (Background Concentrations of Selected Trace Elements in Canterbury Soils, 2006.
- 2. NES-CS health-based soil contaminant standards for residential (10% produce), high-density residential, and outdoor worker (unpaved) land uses.
- 3. AUP-OP⁴ Table E.30.6.1.4.1: Permitted Activity Soil Acceptance Criteria (environmental discharge).
- 4. Ministry for the Environment: Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand, revised 2011.

6.3 Results

A summary of the laboratory test results is provided in Appendix E, with full laboratory transcripts included in Appendix F.

6.3.1 Heavy Metals

The analytical results shown in Appendix E indicate that one lead reading at FT1 (223mg/kg) marginally exceeds the most sensitive NES-CS soil contaminant standard (residential, 10% produce land use - 210mg/kg criterion). No other heavy metal results were found to exceed this standard.

With the exception of HA-BH6 and HA21, all sampling locations contained various heavy metals at concentrations greater than regional background criteria.

6.3.2 Asbestos (presence/absence)

No asbestos was detected within any soil samples tested across the site.

6.3.3 **TPH and BTEX**

The soil underlying the AST was tested for total petroleum hydrocarbons (TPH) and BTEX (Benzene/Toluene/Ethylbenzene/Xylene) to assess whether poor maintenance or dispensing problems had resulted in contamination, and if so whether the fuel hydrocarbon concentrations recorded pose a potential risk to human health or the environment.

⁴ Auckland Unitary Plan – Operative in Part, chapter E30.6, Table E30.6.1.4.1 - Permitted activity soil acceptance criteria. These have been referenced as the Canterbury LWRP does not currently specify soil criteria for environmental discharges.

Page 12

A summary of the laboratory test results is provided in Table 3 and Table 4 below (soil samples), with full laboratory transcripts included in Appendix F.

Sample IDs	Sample Depth (m)	Units	Total Petroleum Hydrocarbons		
			C7-C9	C10-C14	C15-C36
FT1_0.1	0.1	mg/kg	<10	<15	149
FT1_0.3	0.3	mg/kg	<10	<15	<25
Petroleum Guidelines Reside	mg/kg	2,700	3,200	NA	
Petroleum Guidelines Reside PATHWAYS ²	mg/kg	2,700	560	NA	

Table 3: Soil Analytical Results (TPH)

Notes: 1. Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand, Tier 1 TPH soil acceptance criteria, residential use - inhalation pathways, silty clay surface (<1m).

2. Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand, Tier 1 TPH soil acceptance criteria, residential use - all pathways, silty clay surface (<1m).

Comula IDo	Comula Douth (m)	Units	Total BTEX			
Sample IDS	Sample Depth (m)		Benzene	Toluene	Ethylbenzene	Xylenes
FT1_0.1	0.1	mg/kg	<0.05	0.08	<0.05	<0.05
FT1_0.3	0.3	mg/kg	<0.05	<0.05	<0.05	<0.05
Petroleum Guidelines Residential - INHALATION ¹		mg/kg	1.7	210	110	160
Petroleum Guide	lines Residential -	mg/kg	1.7	210	110	160

Table 4: Soil Analytical Results (BTEX)

Notes: 1: Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand, Tier 1 TPH soil acceptance criteria, residential use - inhalation pathways, silty clay surface (<1m).

2: Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand, Tier 1 TPH soil acceptance criteria, residential use - all pathways, silty clay surface (<1m).

Evaluation of the soil laboratory results indicates one heavy-end carbon fraction TPH reading at 149 mg/kg, and one low-level toluene detect at 0.08 mg/kg⁵. Neither reading exceeded the adopted human health acceptance criteria thresholds, as set out in the MfE Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (revised 2011).

6.3.4 Polycyclic Aromatic Hydrocarbons

Low-level detection of PAHs was found in six of the 64 samples (HA4, HA10, HA8, HA-BH3 and FT1), ranging from 0.01mg/kg to 0.09mg/kg. These detected levels are well below relevant NES-CS health-based soil contaminant standards and AUP-OP environmental discharge criteria.

6.3.5 Organochlorine Pesticides

No OCP's were detected within any soil samples tested across the site.

⁵ No published background levels are available for TPH nor BTEX.

7.0 Conceptual Site Model

A post-investigation conceptual site model (CSM) has been developed to summarise the sources of contamination at the site, the human receptors that may be exposed to those contaminants, and the potential pathways for exposure.

Figure 2: Conceptual Site Model

8.0 Regulatory Implications

The rules relating to the control of contaminated sites and potentially contaminated sites, specific to the protection of human health, are specified in the NES-CS.

8.1 NES-CS

The NES-CS⁶ came into effect on 1 January 2012. The NES-CS generally considers issues relating to land use and the protection of human health. The need, or otherwise, for contamination related resource consents for the proposed development has been evaluated against this regulatory requirement.

As one lead concentration exceeds the NES-CS soil contaminant standard for residential (10% produce) land use and several contaminants of concern exceed regional background concentrations, a Restricted Discretionary resource consent will be required under the NES-CS in relation to intended site development works if a standard residential subdivision is proposed once the zone is changed. In the event of standard residential subdivision not being undertaken in the future, i.e. if only a retirement village was intended for the site, then the NES-CS consent activity status would change from Restricted Discretionary activity to Controlled activity. A SMP will be required as part of consent conditions likely to be provided by (WDC), the responsible authority for issuing and regulating land use consents under the NES-CS.

⁶ Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

It is considered that the most appropriate timing to develop a SMP and apply for resource consent under the NES-CS will be subsequent to the plan change, in association with a specific development proposal. The SMP will include methodologies to delineate, remediate or manage, and validate the minor localised exceedance of lead and will provide guidance to the civil works contractor regarding potential re-use of soils on-site. The NES-CS resource consent application and associated SMP would most appropriately be submitted for assessment and approval by WDC in conjunction with a future earthworks consent, residential subdivision application or land use consents, whichever comes first.

Environmental Implications 8.2

A review of the Canterbury Land and Water Regional Plan (LWRP), Map 051, indicates the site is located within an area of semi-confined or unconfined aguifers, and within the Ashley Groundwater Allocation Zone.

The LWRP does not specify permitted activity soil acceptance criteria for discharges of contaminants into air, or into water, or onto or into land from land not used for rural production The Auckland Unitary Plan - Operative in Part (AUP-OP) does specify soil activities. assessment criteria for environmental discharges, as follows:

Contaminant	Permitted Activity Criteria (mg/kg)
Arsenic	100.0
Benzo (a) pyrene (equivalent)	20
Cadmium	7.5
Chromium (total)	400.0
Copper	325.0
Total DDT	12.0
Lead	250.0
Mercury	0.75
Nickel	105.0
Zinc	400.0

Table 5: Environmental Discharges

Note: Permitted activity soil acceptance criteria (AUP-OP, chapter E.30.6, Table E30.6.1.4.1)

Comparing these environmental discharge values with the analytical results for the site (Appendix E) demonstrates that the contaminant concentrations encountered across the site meet these criteria. It is therefore considered that soil disturbance associated with the proposed development is not reasonably likely to pose adverse effects to ecological receptors.

9.0 Soil Reuse and Disposal Options

All topsoil/underlying natural soils from the site are considered suitable for reuse on-site, with the exception of soils in the vicinity of the sole lead exceedance (sampling location FT1). The SMP to be developed in conjunction with a future NES-CS consent application (please refer to Section 8.1) will include delineation and validation testing to ensure soils in the vicinity of this area are appropriately remediated or managed.

Any other excavated topsoil and underlying natural material which is not required for reuse on-site, and with contamination concentrations exceeding background criteria, should be disposed of at an appropriately licensed managed fill facility. Approval from the nominated facility should be granted prior to removing surplus soils off-site.

10.0 Conclusion and Recommendations

The findings of the desktop review and intrusive soil testing regime described in the previous sections indicate the following:

- No obvious visual (e.g. staining) or olfactory (e.g. hydrocarbon odours) signs of ground contamination was noted during the intrusive investigation.
- No asbestos was encountered across the site.
- One lead sample marginally exceeded one of the health-based NES-CS soil • contaminant standards, being residential (10% produce) land use.
- No soil samples exceeded relevant NES-CS health-based soil contaminant standards • for high-density residential or outdoor worker (unpaved) land uses.
- No soil samples exceeded environmental discharge assessment criteria under the AUP-OP, indicating no ecological impacts from soil contamination are anticipated from disturbing surficial soils on-site.
- Samples tested across the site contained heavy metals (mainly lead, chromium and zinc) at concentrations greater than regional background criteria.
- A Restricted Discretionary Activity resource consent will be required to be applied for • under the NES-CS prior to future site development works, as lead exceeds the most sensitive health-based soil contaminant standard in one location and several heavy metals exceed regional background criteria across most of the site. The NES-CS consent status will reduce to Controlled Activity if a retirement village rather than residential end-use is intended.
- A SMP will be required to be prepared in conjunction with an NES-CS consent application for future development works.
- With the exception of soils in the vicinity of the lead exceedance recorded, surficial • soils are considered suitable for on-site reuse. Any excavated topsoil and underlying natural material which is not required for reuse on-site, and with contamination concentrations exceeding background criteria, should be disposed of at an appropriately licensed managed fill facility.
- Specific consents and management approaches to deal with these issues will be • sought and undertaken as part of future land use change enablement.
- Subject to remediation or management of a small area of the site and in accordance • with a WDC approved SMP for the site, all land subject to the plan change is considered to be suitable for residential development and use, based on soil testing information to date.

11.0 Limitation

This report has been prepared solely for the benefit of Summerset Villages (Rangiora) Limited as our client with respect to the brief and Waimakariri District Council in processing the consents. The reliance by other parties on the information or opinions contained in the report shall, without our prior review and agreement in writing, be at such parties' sole risk.

Riley Consultants Ltd has performed the services for this project in accordance with the standard agreement for consulting services and current professional standards for environmental site assessment. No guarantees are either expressed or implied.

The recommendations and opinions expressed are based on data from limited test positions. The nature and continuity of subsoil conditions away from the positions are inferred, and it must be appreciated that actual conditions could vary considerably from the assumed model.

Opinions and judgements expressed herein are based on our understanding and interpretation of current regulatory standards and should not be construed as legal or planning opinions. Where opinions or judgements are to be relied on, they should be independently verified with appropriate advice. There is no investigation that is thorough enough to preclude the presence of materials at the site which presently, or in the future, may be considered hazardous. Because regulatory evaluation criteria are constantly changing, concentrations of contaminants present and considered to be acceptable may, in the future, become subject to different regulatory standards, which cause them to become unacceptable and require further remediation for this site to be suitable for the existing or proposed land use activities.

APPENDIX A

Historical Aerial Photographs

72

6 5

6 6

53

Highfield Lane

CoronationStream

75

11

OakTreatene

12

South Belt

141

Information has been derived from various organisations, including Environment Canterbury and the Canterbury Maps partners. Boundary information is derived under licence from LINZ Digital Cadastral Database (Crown Copyright Reserved). Environment Canterbury and the Canterbury Maps partners do not give and expressly disclaim any warranty as to the accuracy or completeness of the information or its fitness for any purpose.

Information from this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it.

129

Information has been derived from various organisations, including Environment Canterbury and the Canterbury Maps partners. Boundary information is derived under licence from LINZ Digital Cadastral Database (Crown Copyright Reserved). Environment Canterbury and the Canterbury Maps partners do not give and expressly disclaim any warranty as to the accuracy or completeness of the information or its fitness for any purpose.

Information from this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it.

Scale: 1:2,257 @A3

Map Created by canterburymaps.govt.nz on 9/01/2019 at 11:26:37 a.m.

2004 to 2010

Oak

84

Tree Lar

Information has been derived from various organisations, including Environment Canterbury and the Canterbury Maps partners. Boundary information is derived under licence from LINZ Digital Cadastral Database (Crown Copyright Reserved). Environment Canterbury and the Canterbury Maps partners do not give and expressly disclaim any warranty as to the accuracy or completeness of the information or its fitness for any purpose.

Information from this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it.

South Belt

141

Map Created by canterburymaps.govt.nz on 9/01/2019 at 11:27:14 a.m.

11

2010 to 2015

Information has been derived from various organisations, including Environment Canterbury and the Canterbury Maps partners. Boundary information is derived under licence from LINZ Digital Cadastral Database (Crown Copyright Reserved). Environment Canterbury and the Canterbury Maps partners do not give and expressly disclaim any warranty as to the accuracy or completeness of the information or its fitness for any purpose.

Information from this map may not be used for the purposes of any legal disputes. The user should independently verify the accuracy of any information before taking any action in reliance upon it.

South Belt

APPENDIX B

Listed Land Use Register

Customer Services P. 03 353 9007 or 0800 324 636

PO Box 345 Christchurch 8140 P. 03 365 3828 F. 03 365 3194 E. ecinfo@ecan.govt.nz

www.ecan.govt.nz

Dear Sir/Madam

Thank you for submitting your property enquiry in regards to our Listed Land Use Register (LLUR) which holds information about sites that have been used, or are currently used for activities which have the potential to have caused contamination.

The LLUR statement provided indicates the location of the land parcel(s) you enquired about and provides information regarding any LLUR sites within a radius specified in the statement of this land.

Please note that if a property is not currently entered on the LLUR, it does not mean that an activity with the potential to cause contamination has never occurred, or is not currently occurring there. The LLUR is not complete, and new sites are regularly being added as we receive information and conduct our own investigations into current and historic land uses.

The LLUR only contains information held by Environment Canterbury in relation to contaminated or potentially contaminated land; other information relevant to potential contamination may be held in other files (for example consent and enforcement files).

If your enquiry relates to a farm property, please note that many current and past activities undertaken on farms may not be listed on the LLUR. Activities such as the storage, formulation and disposal of pesticides, offal pits, foot rot troughs, animal dips and underground or above ground fuel tanks have the potential to cause contamination.

Please contact and Environment Canterbury Contaminated Sites Officer if you wish to discuss the contents of the LLUR statement, or if you require additional information. For any other information regarding this land please contact Environment Canterbury Customer Services.

Yours sincerely

Contaminated Sites Team

Property Statement from the Listed Land Use Register

Visit www.ecan.govt.nz/HAIL for more information about land uses.

Customer Services P. 03 353 9007 or 0800 324 636

PO Box 345 Christchurch 8140

P. 03 365 3828 F. 03 365 3194 E. <u>ecinfo@ecan.govt.nz</u>

www.ecan.govt.nz

Date: Land Parcels:

15 January 2019	
Lot 3 DP 73557	Valuation No(s): 2159120656

The information presented in this map is specific to the property you have selected. Information on nearby properties may not be shown on this map, even if the property is visible.

Summary of sites:

There are no sites associated with the area of enquiry.

Information held about the sites on the Listed Land Use Register

There are no sites associated with the area of enquiry.

Information held about other investigations on the Listed Land Use Register

 15 Oct 2014
 INV 24498: Ground Contamination Assessment: 141 South Belt & 104 Townsend Road, Rangiora (Detailed Site Investigation)

 Eliot Sinclair & Partners Ltd

Summary of investigation(s):

To facilitate a plan change from 'Residential 4B' to 'Residential 2' a detailed site investigation occurred at 141 South Belt and 104 Townsend Road, Rangiora. The farm had been in family ownership from 1946 to the present and had been used for grazing cattle and horses as well as pig and chicken farming. Chicken sheds were identified on the north of 104 Townsend Road and was opperational from 1965 to 1974 with an unsealed floor. A burn pad was also identified between the residence at 104 and the South Brook. An unused 400 litre above ground storage tank for diesel was located among the horse stalls on the west side of 141 South Belt. 6 soil samples were collected from the chicken shed area and analysed for a suite of metals and organochlorine pesticides with all results compliant with applicable standards. 2 soil samples were collected from the burn pad and analysed for a suite of metals. Arsenic was elevated in one of the samples. The surface 200 mm of soil from the burn pad was excavated and disposed of at Kate Valley. Validation samples of remaining soil complied with residential land use standards.

For further information from Environment Canterbury, contact Customer Services and refer to enquiry number ENQ225559.

Disclaimer:

The enclosed information is derived from Environment Canterbury's Listed Land Use Register and is made available to you under the Local Government Official Information and Meetings Act 1987 and Environment Canterbury's Contaminated Land Information Management Strategy (ECan 2009).

The information contained in this report reflects the current records held by Environment Canterbury regarding the activities undertaken on the site, its possible contamination and based on that information, the categorisation of the site. Environment Canterbury has not verified the accuracy or completeness of this information. It is released only as a copy of Environment Canterbury's records and is not intended to provide a full, complete or totally accurate assessment of the site. It is provided on the basis that Environment Canterbury makes no warranty or representation regarding the reliability, accuracy or completeness of the information provided or the level of contamination (if any) at the relevant site or that the site is suitable or otherwise for any particular purpose. Environment Canterbury accepts no responsibility for any loss, cost, damage or expense any person may incur as a result of the use, reference to or reliance on the information contained in this report.

Any person receiving and using this information is bound by the provisions of the Privacy Act 1993.

Listed Land Use Register

What you need to know

Everything is connected

What is the Listed Land Use Register (LLUR)?

The LLUR is a database that Environment Canterbury uses to manage information about land that is, or has been, associated with the use, storage or disposal of hazardous substances.

Why do we need the LLUR?

Some activities and industries are hazardous and can potentially contaminate land or water. We need the LLUR to help us manage information about land which could pose a risk to your health and the environment because of its current or former land use.

Section 30 of the Resource Management Act (RMA, 1991) requires Environment Canterbury to investigate, identify and monitor contaminated land. To do this we follow national guidelines and use the LLUR to help us manage the information.

The information we collect also helps your local district or city council to fulfil its functions under the RMA. One of these is implementing the National Environmental Standard (NES) for Assessing and Managing Contaminants in Soil, which came into effect on 1 January 2012. For information on the NES, contact your city or district council.

How does Environment Canterbury identify sites to be included on the LLUR?

We identify sites to be included on the LLUR based on a list of land uses produced by the Ministry for the Environment (MfE). This is called the Hazardous Activities and Industries List (HAIL)'. The HAIL has 53 different activities, and includes land uses such as fuel storage sites, orchards, timber treatment yards, landfills, sheep dips and any other activities where hazardous substances could cause land and water contamination.

We have two main ways of identifying HAIL sites:

- We are actively identifying sites in each district using historic records and aerial photographs. This project started in 2008 and is ongoing.
- We also receive information from other sources, such as environmental site investigation reports submitted to us as a requirement of the Regional Plan, and in resource consent applications.

¹The Hazardous Activities and Industries List (HAIL) can be downloaded from MfE's website <u>www.mfe.govt.nz</u>, keyword search HAIL

How does Environment Canterbury classify sites on the LLUR?

Where we have identified a HAIL land use, we review all the available information, which may include investigation reports if we have them. We then assign the site a category on the LLUR. The category is intended to best describe what we know about the land use and potential contamination at the site and is signed off by a senior staff member.

Please refer to the Site Categories and Definitions factsheet for further information.

What does Environment Canterbury do with the information on the LLUR?

The LLUR is available online at <u>www.llur.ecan.govt.nz</u>. We mainly receive enquiries from potential property buyers and environmental consultants or engineers working on sites. An inquirer would typically receive a summary of any information we hold, including the category assigned to the site and a list of any investigation reports.

We may also use the information to prioritise sites for further investigation, remediation and management, to aid with planning, and to help assess resource consent applications. These are some of our other responsibilities under the RMA.

If you are conducting an environmental investigation or removing an underground storage tank at your property, you will need to comply with the rules in the Regional Plan and send us a copy of the report. This means we can keep our records accurate and up-to-date, and we can assign your property an appropriate category on the LLUR. To find out more, visit <u>www.ecan.govt.nz/HAIL</u>.

IMPORTANT!

The LLUR is an online database which we are continually updating. A property may not currently be registered on the LLUR, but this does not necessarily mean that it hasn't had a HAIL use in the past.

Sheep dipping (ABOVE) and gas works (TOP) are among the former land uses that have been identified as potentially hazardous. (Photo above by Wheeler & Son in 1987, courtesy of Canterbury Museum.)

My land is on the LLUR – what should I do now?

IMPORTANT! Just because your property has a land use that is deemed hazardous or is on the LLUR, it doesn't necessarily mean it's contaminated. The only way to know if land is contaminated is by carrying out a detailed site investigation, which involves collecting and testing soil samples.

You do not need to do anything if your land is on the LLUR and you have no plans to alter it in any way. It is important that you let a tenant or buyer know your land is on the Listed Land Use Register if you intend to rent or sell your property. If you are not sure what you need to tell the other party, you should seek legal advice.

You may choose to have your property further investigated for your own peace of mind, or because you want to do one of

the activities covered by the National Environmental Standard for Assessing and Managing Contaminants in Soil. Your district or city council will provide further information.

If you wish to engage a suitably qualified experienced practitioner to undertake a detailed site investigation, there are criteria for choosing a practitioner on www.ecan.govt.nz/HAIL.

I think my site category is incorrect – how can I change it?

If you have an environmental investigation undertaken at your site, you must send us the report and we will review the LLUR category based on the information you provide. Similarly, if you have information that clearly shows your site has not been associated with HAIL activities (eg. a preliminary site investigation), or if other HAIL activities have occurred which we have not listed, we need to know about it so that our records are accurate.

If we have incorrectly identified that a HAIL activity has occurred at a site, it will be not be removed from the LLUR but categorised as Verified Non-HAIL. This helps us to ensure that the same site is not re-identified in the future.

Contact us

Property owners have the right to look at all the information Environment Canterbury holds about their properties.

It is free to check the information on the LLUR, online at www.llur.ecan.govt.nz.

If you don't have access to the internet, you can enquire about a specific site by phoning us on (03) 353 9007 or toll free on 0800 EC INFO (32 4636) during business hours.

Contact Environment Canterbury:

Email: ecinfo@ecan.govt.nz

Phone:

Calling from Christchurch: (03) 353 9007 Calling from any other area: 0800 EC INFO (32 4636)

Everything is connected

Promoting quality of life through balanced resource management. www.ecan.govt.nz E13/101

Listed Land Use Register Site categories and definitions

When Environment Canterbury identifies a Hazardous Activities and Industries List (HAIL) land use, we review the available information and assign the site a category on the Listed Land Use Register. The category is intended to best describe what we know about the land use.

If a site is categorised as **Unverified** it means it has been reported or identified as one that appears on the HAIL, but the land use has not been confirmed with the property owner.

If the land use has been confirmed but analytical information from the collection of samples is not available, and the presence or absence of contamination has therefore not been determined, the site is registered as:

Not investigated:

- A site whose past or present use has been reported and verified as one that appears on the HAIL.
- The site has not been investigated, which might typically include sampling and analysis of site soil, water and/or ambient air, and assessment of the associated analytical data.
- There is insufficient information to characterise any risks to human health or the environment from those activities undertaken on the site. Contamination may have occurred, but should not be assumed to have occurred.

If analytical information from the collection of samples is available, the site can be registered in one of six ways:

At or below background concentrations:

The site has been investigated or remediated. The investigation or post remediation validation results confirm there are no hazardous substances above local background concentrations other than those that occur naturally in the area. The investigation or validation sampling has been sufficiently detailed to characterise the site.

Below guideline values for:

The site has been investigated. Results show that there are hazardous substances present at the site but indicate that any adverse effects or risks to people and/or the environment are considered to be so low as to be acceptable. The site may have been remediated to reduce contamination to this level, and samples taken after remediation confirm this.

Managed for:

The site has been investigated. Results show that there are hazardous substances present at the site in concentrations that have the potential to cause adverse effects or risks to people and/or the environment. However, those risks are considered managed because:

- the nature of the use of the site prevents human and/or ecological exposure to the risks; and/or
- the land has been altered in some way and/or restrictions have been placed on the way it is used which prevent human and/or ecological exposure to the risks.

Partially investigated:

The site has been partially investigated. Results:

- demonstrate there are hazardous substances present at the site; however, there is insufficient information to quantify any adverse effects or risks to people or the environment; or
- do not adequately verify the presence or absence of contamination associated with all HAIL activities that are and/or have been undertaken on the site.

Significant adverse environmental effects:

The site has been investigated. Results show that sediment, groundwater or surface water contains hazardous substances that:

- · have significant adverse effects on the environment; or
- are reasonably likely to have significant adverse effects on the environment.

Contaminated:

The site has been investigated. Results show that the land has a hazardous substance in or on it that:

- has significant adverse effects on human health and/or the environment; and/or
- is reasonably likely to have significant adverse effects on human health and/or the environment.

If a site has been included incorrectly on the Listed Land Use Register as having a HAIL, it will not be removed but will be registered as:

Verified non-HAIL:

Information shows that this site has never been associated with any of the specific activities or industries on the HAIL.

Please contact Environment Canterbury for further information:

(03) 353 9007 or toll free on 0800 EC INFO (32 4636) email ecinfo@ecan.govt.nz

E13/102

Customer Services P. 03 353 9007 or 0800 324 636

PO Box 345 Christchurch 8140 P. 03 365 3828 F. 03 365 3194 E. ecinfo@ecan.govt.nz

www.ecan.govt.nz

Dear Sir/Madam

Thank you for submitting your property enquiry in regards to our Listed Land Use Register (LLUR) which holds information about sites that have been used, or are currently used for activities which have the potential to have caused contamination.

The LLUR statement provided indicates the location of the land parcel(s) you enquired about and provides information regarding any LLUR sites within a radius specified in the statement of this land.

Please note that if a property is not currently entered on the LLUR, it does not mean that an activity with the potential to cause contamination has never occurred, or is not currently occurring there. The LLUR is not complete, and new sites are regularly being added as we receive information and conduct our own investigations into current and historic land uses.

The LLUR only contains information held by Environment Canterbury in relation to contaminated or potentially contaminated land; other information relevant to potential contamination may be held in other files (for example consent and enforcement files).

If your enquiry relates to a farm property, please note that many current and past activities undertaken on farms may not be listed on the LLUR. Activities such as the storage, formulation and disposal of pesticides, offal pits, foot rot troughs, animal dips and underground or above ground fuel tanks have the potential to cause contamination.

Please contact and Environment Canterbury Contaminated Sites Officer if you wish to discuss the contents of the LLUR statement, or if you require additional information. For any other information regarding this land please contact Environment Canterbury Customer Services.

Yours sincerely

Contaminated Sites Team

Property Statement from the Listed Land Use Register

Visit www.ecan.govt.nz/HAIL for more information about land uses.

Customer Services P. 03 353 9007 or 0800 324 636

PO Box 345 Christchurch 8140

P. 03 365 3828 F. 03 365 3194 E. <u>ecinfo@ecan.govt.nz</u>

www.ecan.govt.nz

Date:	15 January 2019	
Land Parcels:	Lot 1 DP 45826	Valuation No(s): 2159206901

The information presented in this map is specific to the property you have selected. Information on nearby properties may not be shown on this map, even if the property is visible.

Summary of sites:

Site ID	Site Name	Location	HAIL Activity(s)	Category
169991	104 Townsend Road, Rangiora	104 Townsend Road,	A10 - Persistent pesticide	Below guideline values -
		Rangiora	bulk storage or use;	Residential
Please note that t	he above table represents a summary of sites a	nd HAIIs intersecting the area α	f enquiry only	

Information held about the sites on the Listed Land Use Register

Site 169991: 104 Townsend Road, Rangiora (Intersects enquiry area.) Site Address: 104 Townsend Road, Rangiora Legal Description(s): Lot 1 DP 45826

Site Category:	Below guideline values - Residential
Definition:	Investigation results demonstrate that hazardous substances present at the site, but below applicable
	guidelines Residential

Land Uses (from HAIL):	Period From	Period To	HAIL land use
	1973	1994	Persistent pesticide bulk storage or use including sports turfs, market
			gardens, orchards, glass houses or spray sheds

Notes: 19 Dec 2016 This record was created as part of the Waimakariri District Council 2016 HAIL identification project. 7 Jul 2017 Area defined from 1973 to 1994 aerial photographs. A10 - Horticultural activities, a poultry farm or sports turf were noted in aerial photographs reviewed.

Investigations:

15 Oct 2014 INV 24498: Ground Contamination Assessment: 141 South Belt & 104 Townsend Road, Rangiora (Detailed Site Investigation) Eliot Sinclair & Partners Ltd

Summary of investigation(s):

To facilitate a plan change from 'Residential 4B' to 'Residential 2' a detailed site investigation occurred at 141 South Belt and 104 Townsend Road, Rangiora. The farm had been in family ownership from 1946 to the present and had been used for grazing cattle and horses as well as pig and chicken farming. Chicken sheds were identified on the north of 104 Townsend Road and was opperational from 1965 to 1974 with an unsealed floor. A burn pad was also identified between the residence at 104 and the South Brook. An unused 400 litre above ground storage tank for diesel was located among the horse stalls on the west side of 141 South Belt. 6 soil samples were collected from the chicken shed area and analysed for a suite of metals and organochlorine pesticides with all results compliant with applicable standards. 2 soil samples were collected from the burn pad and analysed for a suite of metals. Arsenic was elevated in one of the samples. The surface 200 mm of soil from the burn pad was excavated and disposed of at Kate Valley. Validation samples of remaining soil complied with residential land use standards.

Information held about other investigations on the Listed Land Use Register

For further information from Environment Canterbury, contact Customer Services and refer to enquiry number ENQ225563.

Disclaimer: The enclosed information is derived from Environment Canterbury's Listed Land Use Register and is made available to you under the Local Government Official Information and Meetings Act 1987 and Environment Canterbury's Contaminated Land Information Management Strategy (ECan 2009).

The information contained in this report reflects the current records held by Environment Canterbury regarding the activities undertaken on the site, its possible contamination and based on that information, the categorisation of the site. Environment Canterbury has not verified the accuracy or completeness of this information. It is released only as a copy of Environment Canterbury's records and is not intended to provide a full, complete or totally accurate assessment of the site. It is provided on the basis that Environment Canterbury makes no warranty or representation regarding the reliability, accuracy or completeness of the information provided or the level of contamination (if any) at the relevant site or that the site is suitable or otherwise for any particular purpose. Environment Canterbury accepts no responsibility for any loss, cost, damage or expense any person may incur as a result of the use, reference to or reliance on the information contained in this report.

Any person receiving and using this information is bound by the provisions of the Privacy Act 1993.

Listed Land Use Register

What you need to know

Everything is connected

What is the Listed Land Use Register (LLUR)?

The LLUR is a database that Environment Canterbury uses to manage information about land that is, or has been, associated with the use, storage or disposal of hazardous substances.

Why do we need the LLUR?

Some activities and industries are hazardous and can potentially contaminate land or water. We need the LLUR to help us manage information about land which could pose a risk to your health and the environment because of its current or former land use.

Section 30 of the Resource Management Act (RMA, 1991) requires Environment Canterbury to investigate, identify and monitor contaminated land. To do this we follow national guidelines and use the LLUR to help us manage the information.

The information we collect also helps your local district or city council to fulfil its functions under the RMA. One of these is implementing the National Environmental Standard (NES) for Assessing and Managing Contaminants in Soil, which came into effect on 1 January 2012. For information on the NES, contact your city or district council.

How does Environment Canterbury identify sites to be included on the LLUR?

We identify sites to be included on the LLUR based on a list of land uses produced by the Ministry for the Environment (MfE). This is called the Hazardous Activities and Industries List (HAIL)'. The HAIL has 53 different activities, and includes land uses such as fuel storage sites, orchards, timber treatment yards, landfills, sheep dips and any other activities where hazardous substances could cause land and water contamination.

We have two main ways of identifying HAIL sites:

- We are actively identifying sites in each district using historic records and aerial photographs. This project started in 2008 and is ongoing.
- We also receive information from other sources, such as environmental site investigation reports submitted to us as a requirement of the Regional Plan, and in resource consent applications.

¹The Hazardous Activities and Industries List (HAIL) can be downloaded from MfE's website <u>www.mfe.govt.nz</u>, keyword search HAIL

How does Environment Canterbury classify sites on the LLUR?

Where we have identified a HAIL land use, we review all the available information, which may include investigation reports if we have them. We then assign the site a category on the LLUR. The category is intended to best describe what we know about the land use and potential contamination at the site and is signed off by a senior staff member.

Please refer to the Site Categories and Definitions factsheet for further information.

What does Environment Canterbury do with the information on the LLUR?

The LLUR is available online at <u>www.llur.ecan.govt.nz</u>. We mainly receive enquiries from potential property buyers and environmental consultants or engineers working on sites. An inquirer would typically receive a summary of any information we hold, including the category assigned to the site and a list of any investigation reports.

We may also use the information to prioritise sites for further investigation, remediation and management, to aid with planning, and to help assess resource consent applications. These are some of our other responsibilities under the RMA.

If you are conducting an environmental investigation or removing an underground storage tank at your property, you will need to comply with the rules in the Regional Plan and send us a copy of the report. This means we can keep our records accurate and up-to-date, and we can assign your property an appropriate category on the LLUR. To find out more, visit <u>www.ecan.govt.nz/HAIL</u>.

IMPORTANT!

The LLUR is an online database which we are continually updating. A property may not currently be registered on the LLUR, but this does not necessarily mean that it hasn't had a HAIL use in the past.

Sheep dipping (ABOVE) and gas works (TOP) are among the former land uses that have been identified as potentially hazardous. (Photo above by Wheeler & Son in 1987, courtesy of Canterbury Museum.)

My land is on the LLUR – what should I do now?

IMPORTANT! Just because your property has a land use that is deemed hazardous or is on the LLUR, it doesn't necessarily mean it's contaminated. The only way to know if land is contaminated is by carrying out a detailed site investigation, which involves collecting and testing soil samples.

You do not need to do anything if your land is on the LLUR and you have no plans to alter it in any way. It is important that you let a tenant or buyer know your land is on the Listed Land Use Register if you intend to rent or sell your property. If you are not sure what you need to tell the other party, you should seek legal advice.

You may choose to have your property further investigated for your own peace of mind, or because you want to do one of

the activities covered by the National Environmental Standard for Assessing and Managing Contaminants in Soil. Your district or city council will provide further information.

If you wish to engage a suitably qualified experienced practitioner to undertake a detailed site investigation, there are criteria for choosing a practitioner on www.ecan.govt.nz/HAIL.

I think my site category is incorrect – how can I change it?

If you have an environmental investigation undertaken at your site, you must send us the report and we will review the LLUR category based on the information you provide. Similarly, if you have information that clearly shows your site has not been associated with HAIL activities (eg. a preliminary site investigation), or if other HAIL activities have occurred which we have not listed, we need to know about it so that our records are accurate.

If we have incorrectly identified that a HAIL activity has occurred at a site, it will be not be removed from the LLUR but categorised as Verified Non-HAIL. This helps us to ensure that the same site is not re-identified in the future.

Contact us

Property owners have the right to look at all the information Environment Canterbury holds about their properties.

It is free to check the information on the LLUR, online at www.llur.ecan.govt.nz.

If you don't have access to the internet, you can enquire about a specific site by phoning us on (03) 353 9007 or toll free on 0800 EC INFO (32 4636) during business hours.

Contact Environment Canterbury:

Email: ecinfo@ecan.govt.nz

Phone:

Calling from Christchurch: (03) 353 9007 Calling from any other area: 0800 EC INFO (32 4636)

Everything is connected

Promoting quality of life through balanced resource management. www.ecan.govt.nz E13/101

Listed Land Use Register Site categories and definitions

When Environment Canterbury identifies a Hazardous Activities and Industries List (HAIL) land use, we review the available information and assign the site a category on the Listed Land Use Register. The category is intended to best describe what we know about the land use.

If a site is categorised as **Unverified** it means it has been reported or identified as one that appears on the HAIL, but the land use has not been confirmed with the property owner.

If the land use has been confirmed but analytical information from the collection of samples is not available, and the presence or absence of contamination has therefore not been determined, the site is registered as:

Not investigated:

- A site whose past or present use has been reported and verified as one that appears on the HAIL.
- The site has not been investigated, which might typically include sampling and analysis of site soil, water and/or ambient air, and assessment of the associated analytical data.
- There is insufficient information to characterise any risks to human health or the environment from those activities undertaken on the site. Contamination may have occurred, but should not be assumed to have occurred.

If analytical information from the collection of samples is available, the site can be registered in one of six ways:

At or below background concentrations:

The site has been investigated or remediated. The investigation or post remediation validation results confirm there are no hazardous substances above local background concentrations other than those that occur naturally in the area. The investigation or validation sampling has been sufficiently detailed to characterise the site.

Below guideline values for:

The site has been investigated. Results show that there are hazardous substances present at the site but indicate that any adverse effects or risks to people and/or the environment are considered to be so low as to be acceptable. The site may have been remediated to reduce contamination to this level, and samples taken after remediation confirm this.

Managed for:

The site has been investigated. Results show that there are hazardous substances present at the site in concentrations that have the potential to cause adverse effects or risks to people and/or the environment. However, those risks are considered managed because:

- the nature of the use of the site prevents human and/or ecological exposure to the risks; and/or
- the land has been altered in some way and/or restrictions have been placed on the way it is used which prevent human and/or ecological exposure to the risks.

Partially investigated:

The site has been partially investigated. Results:

- demonstrate there are hazardous substances present at the site; however, there is insufficient information to quantify any adverse effects or risks to people or the environment; or
- do not adequately verify the presence or absence of contamination associated with all HAIL activities that are and/or have been undertaken on the site.

Significant adverse environmental effects:

The site has been investigated. Results show that sediment, groundwater or surface water contains hazardous substances that:

- · have significant adverse effects on the environment; or
- are reasonably likely to have significant adverse effects on the environment.

Contaminated:

The site has been investigated. Results show that the land has a hazardous substance in or on it that:

- has significant adverse effects on human health and/or the environment; and/or
- is reasonably likely to have significant adverse effects on human health and/or the environment.

If a site has been included incorrectly on the Listed Land Use Register as having a HAIL, it will not be removed but will be registered as:

Verified non-HAIL:

Information shows that this site has never been associated with any of the specific activities or industries on the HAIL.

Please contact Environment Canterbury for further information:

(03) 353 9007 or toll free on 0800 EC INFO (32 4636) email ecinfo@ecan.govt.nz

E13/102

APPENDIX C Site Photographs

Page 1

Site Photographs 1 to 8

Photo 1: Site

Photo 2: South Brook Stream

Photo 3: Area where AST was once located

Photo 4: Horse manure stockpiled adjacent to horse stables

Photo 5: Sawdust manure stockpiled adjacent to shed

Photo 6: Burn pad 1

Photo 7: Burn pad 2

Photo 8: Hand auger excavations - example of subsurface soils encountered

APPENDIX D Test Pit Logs

2	RI CONS Engineers	ULT/ and Ge	EY ANTS cologists	Riley Cons 2 Moorhouse A Christchurch fel: +643 37944 fax: +643 3794	ultants ^{ve} 402 403							HAN	D	AU	G	ER LO	C	
Proje	ct: merse	Rar	ndiora Du	e Diligence	<u>-</u>	Locatio	n: end Rd	South F	Relt Rangic	ra	Hole p	osition: to Site Play	n			N	lo.:	
Job N	lo.: 17)743	3	Start Dat Finish Da	te: 18- ate: 18-	12-18 12-18	Groun	nd Level 23.9	(m LINZ): 0	Co-Ordin E 1	ates (NZT ,566,301.9	M2000): N 5,203	,431	.4		BF	P1-1	
Clien We	t: elhom	Dev	elopment	s Ltd				Hole Do 0.40 r	epth: n	1					1	Sheet: 1	of 1	
66 (m LINZ)	Depth (m)	Geological Unit	(refer Int	Geologic to separate (formation she	cal Desci Geotechnic eet for furth	ription cal and Geo ner informat	blogical ion)	Legend	Soil Shea (kł	r Strength Pa) 150 200	Scala Per (blows) 3 6	netrometer / 50 mm) 9 12 1	сл Groundwater	Soil Moisture	Samples	Tes	ts	Instrument/ Backfill
+23.75	- 0.15 -	PRINGSTON FORMATION TOPSOIL)	SILT, trac moist; low (TOPSOIL SILT, min grey with stiff; mois organics,	e clay, organi / plasticity; or -) or to some cl orange and y t; low plastici charcoal (YA	ics; dark b rganics, ro lay, trace s rellowish-b ity; sand, fi LDHURST	rown. "Firm otlets, char sand and or rown mottli ine to medi r MEMBER	ganics; ng. Very um;							ESC	.1 ////			
+23.50	0.40	DHURST MEMBER, SF	SPRINGS		411ON)			× * * *						ESC	0.3			
Expl	- - - - - - -	ns:						GROUI				Remark						
V S V F V S U Soil D = c	Scala Pe plows/50 Permeat Schmidt nsitu Va /=Peak, JTP=Un Moisture dry; M =	netro mm ility T Ham ne Sh R=Re able t	meter - est ner esidual, o penetrate t; W = wet: :	• h (kPa) ⊻ 1 ⊻ 5 S =	Small Disi Large Disi U100 Und Water Stri Water Ris Rise Time	turbed Sam turbed Sam listurbed Sa ike (1st, 2nd se (1st, 2nd e (minutes)	iple ple ample d)) and	X No Slo Ra HOLE 1	ot Encounter w Seep (de pid Inflow (de FERMINATE et depth X	ed pth) lepth) D DUE TO: Refusal] Collapse	1. Coordina and subject 2. Hole loc: environmer 3. No stren testing at n	ates a t to su ated c ntal sa gth te earby	nd elev urvey co on edge ampling sting; s HA loc	rations onfirm of bu of bu i. trengt ations	s based on ha lation. Irn pad, under th terms base s.	nd hand Gi taken for d on in-situ	PS J
All d	ated imens Sca	ons le 1	in metres	, Contra	ictor:				Rig/Pl Hand	ant Used: Auger 70 m		J [L	.ogged by: AvD	Checke	d by: C

2	RI CONS Engineers	ULT/ and Ge		Riley Con 22 Moorhouse Christchurch Fel: +643 379 Fax: +643 379	sultants Ave 4402 94403								HAN	ID	Al	JG	ER LO	OG	
Proje	ct: merset	Rar	ngiora Du	e Diligen	~	Locatio	on: end Rd	/South	Bolt Ra	andior		Hole p	osition:	an			Ν	lo.:	
Job N	lo.: 17	0743	8	Start Da	ate: 18 Date: 18	-12-18 -12-18	Grour	nd Leve	I (m LIN 50	IZ):	Co-Ordir E 1	nates (NZ1 ,566,295.4	M2000): M2000): M2000):	3,432	2.4		BF	P1-2	
Clien W	it: elhom	Deve	elopment	s Ltd				Hole D 0.40)epth: m								Sheet: 1	of 1	
(m LINZ)	Depth (m)	Geological Unit	(refer In	Geolog to separate formation st	ical Desc Geotechn heet for furl	c ription ical and Ge her informa	ological ttion)	Leaend	Soil S	Shear (kPa 100 1	Strength a) 50 200	Scala Pe (blows 3 6	netrometer / 50 mm) 9 12	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
+23.35	- - -	INGSTON FORMATION) (TOPSOIL)	SILT, trac moist; lov (TOPSOII SILT, min grey with stiff; mois organics, SPRINGS	e clay, orga v plasticity; L) nor to some orange and st; low plastic charcoal (Y STON FORM	clay, trace yellowish- icity; sand, 'ALDHURS /ATION)	brown. "Firr potilets, cha sand and o brown mott fine to med T MEMBEF	n to stiff"; rcoal rganics; iing. Very ium; {,								E	S0.1 \			
+22.90	- 0.60	(YALDHURST MEMBER, SPRI																	
	1		EURIUU	.40 11															-
	-																		
	lanatio Scala Pe blows/50 Permeat Schmidt nsitu Va V=Peak, Moisture dry; M = rated	netroi mm illity T Hamr ne Sh R=Re able to moist	meter - est ner lear Strengi esidual, o penetrate ;; W = wet; in motors	th (kPa) S = Contr	Small Dis Large Dis U100 Un Water St Water Ri Rise Tim	sturbed Sar sturbed Sar disturbed S rike (1st, 2r se (1st, 2nc e (minutes)	nple nple ample nd) d) and	GROU X N SI Ra HOLE Tar	NDWAT lot Enco ow Seep apid Inflo TERMIN get deptl	FER untere o (dep ow (de NATED hXF	d h) pth) DUE TO: Refusal	Collapse	Remar 1. Coordii and subje 2. Hole lo environm 3. No stre testing at	ks nates a ect to s ocated ental s ength to nearb	and ele survey o on edg amplir esting; y HA lo	evation confirr ge of b ng. strens ocation	ns based on ha nation. ourn pad, under gth terms base ns.	nd hand G taken for d on in-situ	iPS
<u> </u>	Sca	le 1:	10						H	and A	uger 70 n	nm					AvD	CF	°C

2	RI CONS Engineers	ULT/ and Ge	ANTS Fologists	Riley Cons 2 Moorhouse A hristchurch el: +643 3794 ax: +643 3794	Ave 402 4403							HAN	D	AU	GER L	OG
Proje	ct: merse	Rar	ndiora Du	Diligenc	e	Locatio	n: end Rd	South 1	Relt Randi	ora	Hole p	osition: to Site Play	n		N	lo.:
Job N	lo.: 17()743		Start Da Finish D	te: 20- ate: 20-	12-18 12-18 12-18	Groun	id Level 24.0	(m LINZ): 0	Co-Ordin E 1	ates (NZT ,566,324.2	M2000): N 5,203,	479.	5	BF	P2-1
Clien We	t: elhom	Deve	elopments	: Ltd				Hole D 0.60 i	epth: n						Sheet: 1	of 1
Elevation (m LINZ)	Depth (m)	Geological Unit	(refer Inf	Geologi to separate prmation sh	cal Desc Geotechnic eet for furth	ription cal and Gener informa	ological tion)	Legend	Soil Shea (k	r Strength Pa)	Scala Per (blows)	netrometer / 50 mm) 9 12 1	Groundwater	Soil Moisture Samples	Tes	Instrument/ Backfill
+23.85	- 0.15	ST MEMBER, SPRINGSTON FORMATIONTOPSOIL)	SILT, trac moist; low (TOPSOIL SILT, mine grey with stiff; mois organics, SPRINGS	e clay, orgar plasticity; o) or to some c orange and i ; low plastic charcoal (Y/ TON FORM	hics; dark b rganics, ro lay, trace s yellowish-b sity; sand, f ALDHURST ATION)	rown. "Firm otlets, char and and or rown mottl ine to medi MEMBER	n to stiff"; rcoal rganics; ing. Very ium; S,							ES0.1 ES0.3	1111	
+23.60	0.40	(YALDHURS)														
	- - - - -		EOH @ 0.	60 m												
Expl Expl F F Soil	anation Scala Pe Permeat Schmidt Asitu Va /=Peak, Woisture	netro mm ility T Hamr ne Sh R=Re able to	meter - est ner lear Strengtl esidual, o penetrate	• • • • • • • • • • • • • •	Small Dis Large Dis U100 Und Water Str Water Ris Rise Time	turbed San turbed San isturbed Sa ike (1st, 2n e (1st, 2nd e (minutes)	nple nple ample Id) I) and	GROUI	NDWATER ot Encounte ow Seep (de pid Inflow (TERMINATE uet depth X	red epth) depth) DUE TO:	Collapse	Remark: 1. Coordina and subjeci 2. Hole loca environmer 3. No streny testing at n	S ates ar t to su ated o ntal sa gth tes earby	nd elevat irvey con n edge c impling. sting; stri HA loca	ions based on ha firmation. f burn pad, unde ength terms base ions.	and hand GPS rtaken for ed on in-situ
All d	ated imensi	ons le 1.	in metres	Contra	actor:				Rig/P	ant Used: Auger 70 m	 1m	J <u>[</u>			Logged by: AvD	Checked by:

2	RI	ULTA and Ge	ANTS Hologists	Riley Cons 2 Moorhouse A hristchurch el: +643 37944 ax: +643 3794	ultants we 402 403								HAN	D	A	UG	GER LO	OG	
Proj Sur	ect: nmerse	Rar	ngiora Due	Diligence	9	Locatio Towns	n: end Rd	l/South	n Be	lt Rangio	ra	Hole p	osition: to Site Pla	ın			N	lo.:	
Job	No.: 17	0743	. <u></u>	Start Dat	te: 20-	·12-18	Grour	nd Lev	vel (r	n LINZ):	Co-Ordin	ates (NZT	M2000):				F	T1	
Clie	nt:	0740	,		ale. 20-	12-10		24 Hole	Dep	oth:	ΕΊ,	200,303.0	N 5,203	,508	5.0		Sheet:		
V	Velhom	Deve	elopments	Ltd				0.60	0 m								1	of 1	
+24.7 (m LINZ)	Depth (m)	Geological Un	(refer Inf	Geologic to separate (prmation she	cal Desc Geotechnic eet for furth	ription cal and Geo her informat	ological tion)	-	Legend	Soil Shear (kF 50 100	Strength Pa)	Scala Per (blows) 3 6	netrometer / 50 mm) 9 12 1	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
	1																		
	Dianatio Scala Pe blows/50 Permeal Schmidt Insitu Va V=Peak	ns: enetroi omm oility T Hamr ne Sh R=Re able to	meter - est ner ear Strength esidual, o penetrate	● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Small Dis Large Dis U100 Und Water Str Water Ris Rise Time	turbed Sam turbed Sam disturbed Sa ike (1st, 2n se (1st, 2nd e (minutes)	nple nple ample d)) and	GRO X S F HOLE	Not Slow Rapic E TE	WATER Encounter Seep (de d Inflow (d RMINATE depth x	ed pth) epth) D DUE TO: Refusal	Collapse	Remark 1. Coordin: and subjec 2. Hole loc environme 3. No strer locations.	(S ates a ct to s ated s ntal s ngth te	and e urvey adjac ampl esting	elevatio / confir cent to ling. g; strer	ns based on ha mation. BH1, undertake ngth terms base	nd hand GF en for d on nearby	y HA
Sat All	urated dimens	ions	, vv = wet; 8 	, _ Contra	ictor:					Rig/Pla	ant Used: Auger 70 m	m] [Logged by: AvD	Checked	d by:

2	RI CONS Engineers	ULT/ and Ge	ANTS Pologists Fa	iley Consulta Moorhouse Ave rristchurch I: +643 3794402 x: +643 3794403	Ints						HAN	D	AUC	GER L	OG	
Projec	ct: merset	Rar	ngiora Due	Diligence	Locati	on: send Rd/	South Re	lt. Rangir	ora	Hole	position: er to Site Plan	ו.		I	No.:	
Job N	lo.: 17()743	3	Start Date:	18-12-18	Groun	id Level (i 24.80	n LINZ):	Co-Orc	linates (NZ	TM2000):	 556 '	2	H H	A01	
Clien	t:			1 +d			Hole Dep	oth:		1,000,200		000.		Sheet:	of 1	
							1.70 m					5	e (o			
08.74 (m LINZ	Depth (m	Geological U	(refer t Info	Geological I o separate Geo ormation sheet for	Description technical and Ge or further information	eological ation)	Legend	Soil Shea (k 50 100	ar Strengtl Pa) 150 200	n Scala F (blow 3 6	Penetrometer is / 50 mm) is 9 12 15	Groundwate	Soil Moistur Samples	Te	sts	Instrument/ Backfill
+24.50	- 0.30	(TOPSOIL)	SILT, trace soft"; dry tr (TOPSOIL)	clay, organics; p moist; low plas	dark brown. "So ticity; organics,	ft to very rootlets.							ES0.1 NOV	No. 1 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2		
	_		SILT, mino orange mo medium. (' FORMATIC	r to some clay, t ttling. Soft; mois /ALDHURST MI DN)	trace sand; light st; low plasticity; EMBER, SPRIN	grey and sand, fine GSTON	to x x x x x x x x x x x x x x x x x x x									
	_		0.45m Gra	des to 'firm'. It grey with oran	ge mottling.		**									
	-		0.60m Gra	des to very stiff.	go mouning.		× × × ×	 	 x 				ES0.5 NOV		V= 184 R= 46	
	- - - 1 -	(YALDHURST MEMBER, SPRINGSTON FORMATION)	1.00m Gra	des to hard.			× × × × × × × × × × × × × ×						ES0.9 NOV	No. 2 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 4, 7, 9, 20	✓ V= 230	
+23.30 +23.10	- <u>1.50</u> - <u>1.70</u>		Sandy fine saturated; medium. 1.60m GRa	to medium GR/ gravel, subround	AVEL, trace clay led; greywacke; ise'.	 /. Dense; sand, fine	x x x x x x x x x x					Ţ		V		
			EOH @ 1.7	70 m												
Expl Expl b F F Soil D = c	anation Scala Pe blows/50 Permeab Schmidt nsitu Va /=Peak, <u>Moisture</u> dry; M =	netro mm ility T Hamr ne Sh R=Re able to	meter - est ner bear Strength esidual, o penetrate t; W = wet: S	● Sma Larg U10 (kPa) ♥ Wa ▼ Wa ▼ Rise	all Disturbed Sa ge Disturbed Sa 10 Undisturbed S ter Strike (1st, 2 ter Rise (1st, 2n e Time (minutes	mple mple Sample nd) d) and	GROUNI	DWATER Encounte Seep (de d Inflow (RMINATE depth X	red epth) depth) ED DUE T(] Refusal	D:	e Remarks	s tes an to sur terms test w bil stre esults	nd elevati rvey conf for cohe here ava ngth term and indio	ons based on h irmation. sive soil layers ilable. Where n is are based or cated in quotati	and-held GF are based o o shear van o correlation on marks.	PS n e, with
All d	imensi	ons	in metres	Contracto	r:			Rig/P	lant Used					Logged by:	Checke	ed by:

Proje	ct: mersef	Rar	ndiora Du	le Diligence		Locatio	n: end Rd/	South	Belt	Rangi	ora		Ho	le pos	sition:	an			Ν	No.:	
Job N	lo.: 17()74.9	. <u></u>	Start Date	: 17- e: 17-	12-18	Groun	d Leve	I (m	LINZ):	Co	-Ordin	ates (I	NZTM	12000):	576	27		H	A02	
Clien	it:	_	·		0. 17	12 10		Hole D	Depth	1:		E 1,	,500,5	52.0	N 3,203	, <i>37</i> 0			Sheet:		
W L		Deve E	elopment	s Ltd				0.70	m 							-	۵		1	of 1	
(m LINZ (m LINZ	Depth (m	Geological U	(refe In	Geologica to separate Ge formation shee	I Desci eotechnic t for furth	r iption cal and Ge ler informa	ological tion)	Legend	So	50 100	ar Stre Pa)	ength 200	Scal (bl 3	a Pene ows / 5 6	etrometer 50 mm) 9 12	5 Groundwate	Soil Moistur	Samples	Tes	sts	Instrument/ Backfill
			SILT, trac moist; lov	ce clay, organics w plasticity; orga	s; dark b anics, ro	rown. "Stiff otlets. (TOI	f"; dry to PSOIL)	<u>\\</u>	. /		I		,						No. 1 3, 2, 2, 2, 2, 2, 1, 2, 2,		
	_	(TOPSOIL)	0.15m Gi greywack	ades to include ce.	e minor fi	ne gravel, s	subrounde	ed, <u>\\</u>	<u>. /</u>				+ + + + !					ES0.1 NOV	3, 2, 3, 2, 3, 12, 13, 14		
+25.55	-	N FORMATION)	SILT, mir orange m sand, fine SPRINGS	nor to some clay ottling. Firm to e to medium. (Y STON FORMAT	y, trace s stiff; moi ALDHUF ION)	and; light <u>(</u> ist; low pla RST MEME	grey and sticity; BER,	x x x x x x x x x x x x x x x x x x x													
	-	T MEMBER, SPRINGSTO	0.45m Gi	ades to 'stiff'.				* ^ ^ * ^ ^ ^ * ^ ^ ^	`← <- <-									ES0.5			
+25.10	0.70	(YALDHURS	0.60m Au recovered	uger grating on i d).	inferred (gravel (non	e	× - ^ × - ^ - × - ^				× 								Y V= 230	
			EOH @ ().70 m										`+_ 							
	_											İ			0.85m	 			V		-
	-											 				 					-
	- 1																				_
												l									
	_																				-
	-											i I									-
																1					
	_																				-
	-															i					-
	_															1					
	_															i					
Expl	anatio	าร:						GROU	INDV	VATER		1			Remarl	<pre></pre>	<u> </u>	<u> </u>			
	Scala Pe blows/50 Permeat Schmidt	netro mm ility T Hamr	meter - est ner	● S □ La ■ U ■ U	mall Dist arge Dist 100 Und /ater Stri	turbed San turbed San isturbed Sa ike (1st, 2n	nple nple ample id)	X N SI	lot Ei ow S apid I	ncounte eep (de Inflow (ered epth) depth)			1. Coordin and subject 2. Strength shear vand cohesive s	ates a ct to s n term e test soil st	and e surve ns for whe reng	elevation y confin r cohes re avail th terma	ns based on ha mation. ive soil layers a able. Where no s are based on	and-held GF are based o o shear van correlation	PS on le, with
Soil D = 0	/=Peak, Moisture dry; M =	R=Re able to moist	esidual, o penetrate ;; W = wet;	S =	/ater Ris ise Time	e (1st, 2nd (minutes)	, I) and	HOLE	TER get d	MINATE	ED DU	, IE TO: Isal	Colla	pse	Scala test	resul	ts ar	nd indic	ated in quotatio	on marks.	
All d	limensi Sca	ons le 1:	in metres 10	Contract	tor:					Rig/P Hand	lant L Auge	Jsed: r 70 m	ım						Logged by: AvD	Checke	ed by: C

2	RI CONS Engineers	ULT/ and Ge	EY ANTS cologists	Riley Consu 22 Moorhouse Ave Christchurch Tel: +643 379440 Tax: +643 379440	ltants									H/	١N)	AI	UG	ER L	OG	
Proje	ect:	Ra	naiora Du	e Diligence		Locatio	n: end Rd	/Sour	th Be	elt Randio	ra		Hole p	oositio	n: e Plan	1			Ν	lo.:	
Job N	No.:	1743		Start Date	: 18-	12-18	Grour	nd Le	evel (m LINZ):	Co-Ordi	inate	s (NZ	TM200)0):	-04			H	A03	
Clier	nt:	<i></i>	, 		.e. 10-	12-10		Hole	4.40 e De	pth:	E	1,50	6,431.	0 115	5,203,5	581	.4		Sheet:		
W	elhom	Dev	elopment	s Ltd				0.7	75 m										1	of 1	
07.14 (m LINZ)	Depth (m)	Geological Uni	(refer In	Geologica to separate G formation shee	I Desc eotechnie t for furth	ription cal and Geo ner informa	ological tion)		Legend	Soil Shea (kF 50 100	r Strength Pa) 150 200		Scala Pe (blows 3 6	enetrom / 50 mr 9	eter n) 12 15	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
			SILT, trac low plasti	e clay, organic city; organics,	s; dark b rootlets.	rown. "Firm (TOPSOIL)	n"; moist;	1	<u></u> 			,							No. 1 2, 1, 1, 2, 1, 1,		
	-	OIL)						:	<u></u>			4						```	1, 2, 1, 2, 1, 2, 2, 2, 3,		
		(TOPS(<u> </u>	i i	i i			i			E	ES0.1 NOV	19		
			0.25m Gr	ades to include	e minor c	orange mott	ling.	1	<u> </u>												
+24.10	0.30		SII T min	or to some cla	v trace s	and: arev y	with oran	: >	<u>\\/</u> <			ł									
	_	(NOTION)	and yellow plasticity;	sand, fine to n	ttling. "F nedium.	irm"; moist (YALDHUR	; low ST	yc >	<u>×</u>												
		TON FOR	MEMBER			AHON)		7	~~ ~~												
	-	SPRINGS						Ĺ	~~ 									```			
		MEMBER,						<u>></u>	<u>×</u>	 				i			E	ES0.5 NOV		, V= 197	
		-DHURST	0.60m Gr	ades to very st	π.			>	$\frac{\times}{\times}$											R- 50	
+23.65	0.75	(VAL						>	<			4	 N								
20.00	-		EOH @ 0	.75 m																	-
	-																		V		-
	-1									i i I I	i i I I				0.95m [™] 				•		_
	-																				
5																					
p	-																				-
	-									i i	i i		i i I I	i							-
										i i I I	i i I I		i i I I	Ì							
	-																				-
	-																				-
	<u> </u>																				
Exp ∎	lanation Scala Pe	าร: netro	meter -	• s	mall Dis	turbed Sam	nple	GRO		DWATER	ed			1. Co	marks	tes a	nd el	evatio	ns based on ha	and-held G	iPS
	blows/50 Permeab	mm ility T	est		arge Dis 100 Und	turbed Sam listurbed Sa	nple ample		Slov	v Seep (de	pth)			and 2. St	subject rength t ar vane f	to su terma	urvey s for (where	confin cohesi e avail:	mation. ve soil layers a able. Where no	are based o	on ne.
	Scnmidt Insitu Va	Hami ne Sł	mer near Strengt	h (kPa) 🛓 V ī v	/ater Str /ater Ris	ike (1st, 2n se (1st, 2nd	d)) and		Rap	id Inflow (c	lepth)			cohe	a test re	il stre esult	ength s and	terms indica	are based on ated in quotatic	correlation	n with
Soil	v=reak, <u>WTP=Un</u>	nt=Ri able t	esiqual, o penetrate	, Ž P	ise Time	(minutes)		HOL T	LE TI arge		D DUE TO Refusal):] C	ollapse								
All c	dry; M = rated dimensi Sca	ons le 1·	in metres	s =	tor:		[L			Rig/Pland	ant Used:	mm							Logged by: AvD	Check	ed by: C

2	RI CONS Engineers	Rise Consultants 2040mtaxe Mini- 2040mtaxe Mini														UC	GER LO	OG	_
Proje	ect:	_		D.I.		Locatio	n:					Hole p	osition:				N	lo.:	
Job N	No.:	Rai	ngiora Du	Start Date	: 17-	10wns 12-18	Grour	d Level	(m LINZ):	co-Ordir	nate	s (NZT	to Site M2000	Pian.):			H/	404	
Clier	170)743	3	Finish Dat	e: 17-	12-18		23.7) onth:	E 1	,566	6,509.8	8 N 5,2	203,59	1.9		Sheet [.]		
W	elhom	Dev	elopment	s Ltd				0.70 n	אָרָיי. ו								1	of 1	
(m LINZ)	Depth (m)	Geological Unit	(refer Inf	Geologica to separate Ge ormation shee	I Desci eotechnic t for furth	r iption cal and Ge er informa	ological tion)	Legend	Soil Shea (kl	r Strength Pa)	S	Scala Pe (blows) 3 6	netromete / 50 mm) 9 12	er Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
	-	(TOPSOIL)	SILT, trac low plasti	e clay, organic: city; organics, r	s; dark b ootlets.	rown. "Firm (TOPSOIL)	n"; moist;									ES0.1 NOV	No. 1 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 3, 3, 3, 4, 16, 20		
+23.45	0.25		0.20m Gra	ades to 'stiff'.															
	-	R, SPRINGSTON FORMATION)	SILT, min and yellov plasticity; MEMBER	or to some clay vish-brown mo sand, fine to m , SPRINGSTOI	/, trace s ttling. Ve ιedium. (Ν FORM	and; grey v ry stiff; mo YALDHUR ATION)	with orang ist; low SST				• •								
+23.00	0.70	(YALDHURST MEMBER	0.60m Gr	ades to hard.						 X X						ES0.5 NOV		Y V= 230	-
	- - - -																		-
Exp ↓ ↓ Soil D =	lanation Scala Pe blows/50 Permeat Schmidt Insitu Va V=Peak, Woisture dry; M =	netro mm ility T Ham ne Sh R=R able t mois	rest Fest mer hear Strengt esidual, o penetrate t; W = wet; :	● S □ La ■ U ■ W 1 W 1 W 2 R S =	mall Dist arge Dist 100 Und /ater Stri /ater Ris ise Time	urbed San urbed San isturbed Si ke (1st, 2n e (1st, 2nd (minutes)	nple nple ample id) I) and	GROUN	IDWATER of Encounter w Seep (de bid Inflow (d ERMINATE et depth X	red lepth) D DUE TO: Refusal	:] Co	ollapse	Rem 1. Cool and su 2. Street shear v cohesiv Scala t	arks object to so ngth term vane test ve soil st est resul	and surve ns fo whe treng lts ar	elevatic y confi r cohes re avai th term nd indic	ons based on ha rmation. sive soil layers a lable. Where no s are based on ared in quotatic	and-held GF are based o o shear van correlation on marks.	⊃S n e, with
All c	^{rated} limensi Sca	ons le 1	in metres	Contract	tor:				Rig/Pl Hand	ant Used: Auger 70 n	nm		┘└───				Logged by: AvD	Checke CF	d by: C

2	RI CONS Engineer	SULT.	EY ANTS eologists	Riley Consulta 2 Moorhouse Ave hristchurch el: +643 3794402 ax: +643 3794403	ants								HAN	١D	A	UC	GER LO	OG	
Proje	ct: merse	t Rai	ndiora Du	e Diligence	Locatio	on: send Rd	/South I	Relt F	Pandior	a		Hole p	osition: to Site P	lan			N	lo.:	
Job N	No.: 17	0743	3	Start Date:	20-12-18	Grour	nd Level	l (m Ll	NZ):	Co-Ordi	inate	s (NZT	M2000):	2 612	2 /		H	A05	
Clier	nt:						Hole D	epth:		L	1,500	,	14 3,20	5,010	J. 4		Sheet:	-6.4	
vv E G		Dev E					0.95	m 						2	ė			or 1	
06.22+ (m LINZ	Depth (m	Geological L	(refer Inf	Geological to separate Geo ormation sheet t	Description otechnical and Ge for further informa	eological ation)	Legend	Soil	Shear (kPa 0 100	Strength a) 1 <u>50 200</u>	1 S	Scala Pe (blows)	netrometer / 50 mm) <u>9 12</u>	Croundwate	Soil Moistur	Samples	Tes	sts	Instrument/ Backfill
			SILT, tract to moist; I	e clay, organics; ow plasticity; org	; dark brown. "Ve ganics, rootlets. (ry stiff"; dr TOPSOIL)	y <u>// /</u>										No. 1 0, 0, 1, 0, 1, 1, 1, 1, 2,		
+22.65	-	(TOPSOIL)	0.20m Gra	ades to 'soft'.												ES0.1 NOV	1, 1, 2, 2, 1, 2, 1, 2, 2, 4		
+22.03	-		SILT, min orange m sand, fine SPRINGS	or to some clay, ottling. "Soft" mo to medium. (YA TON FORMATIC	trace sand; light bist to wet; low pl LDHURST MEM DN)	grey and asticity; BER,	× × ×												
	-	FORMATION)	0.40m Gra	ades to 'firm'.			* * * * * *	← ← ←											
	-	BER, SPRINGSTON					× × ×									ES0.5 NOV			
	-	(YALDHURST MEN					× × × × ×												
_	-		0.80m Gra	ades to 'stiff'.				← ≤											
+21.95	0.95	5	0.90m Gra grey with greywack	ades to include s orange mottling; e; sand, fine to r	some gravel and ; ; gravel, medium, nedium.	sand; light subround	t ed, × ×						 0.95r	⊓ ┣		ES0.9 NOV	No. 2	Q Q Q	
	- 1		EOH @ 0	95 m								 <i>T</i>					4, 6, 5, 9, 12, 17		
	-												 						
	_											 	 1.25r	 **•			¥		-
5-11amin-2-5	-																		-
	-																		-
100 00-00 C4/	_								 										-
	-																		
Exp	lanatio	ns:					GROU	NDWA	TER			I	Rema	rks					
	Scala Pe blows/50 Permeal Schmidt	enetro)mm pility 1 Ham	rest mer	 Sm Lar U10 1 	nall Disturbed Sar rge Disturbed Sar 00 Undisturbed S	npie nple ample		lot Enc ow See	ountere ep (dep	d th)			1. Coord and subj 2. Streng Scala tes	inates a ect to s oth term st resul	and o surve ns fo lts ar	elevatio y confi r cohes nd indic	ons based on ha rmation. sive soil layers a cated in quotatio	and-held GPS are based on on marks.	;
Soil	lnsitu Va V=Peak Moistur dn/: M =	R=R Able t	near Strengt esidual, to penetrate	n (kPa) ⊻ Wa 1 Wa ⊻ Ris	ater Strike (1st, 2) ater Rise (1st, 2) se Time (minutes)	nd) d) and)	HOLE Tar	apid Inf TERM get dep	flow (de INATED oth X F	epth) DUE TC Refusal): Co	ollapse							
Satu All c	rated limens	ions	in metres	Contracto	or:				Rig/Pla	nt Used:	 mm]				Logged by:	Checked	by:

2	RI CONS Engineers	ULT/ and Ge	EY 2 ANTS To tologists F	Riley Consult 2 Moorhouse Ave hristchurch el: +643 3794402 ax: +643 379440	tants								HAN	D	A	UG	ER L	OG	
Proje	ect:	Rar	ngiora Du	e Diliaence		Locatio Towns	n: end Rd/	South R	elt. Randi	ora		Hole po	sition: o Site Pla	an			1	No.:	
Job	No.: 17)742		Start Date:	20-1 e 20-1	12-18	Groun	d Level	(m LINZ):	Co-Ord	linate	es (NZTN	/2000):		Л		H	A06	
Clie	nt:				J. 20-	.2 10		Hole De	epth:		1,00	0,013.0	N 0,200	,usz	4		Sheet:		
	/elhom	Dev E	elopments	Ltd				1.00 m	n 						0		1	of 2	
(m LINZ	Depth (m	Geological U	(refer Infe	Geological to separate Ge ormation sheet	Descr otechnic	iption al and Geo er informat	ological tion)	Legend	Soil Shea (k	ar Strength Pa) 150 200	h ^s	Scala Pen (blows / 3 6	etrometer 50 mm) 9 12	5 Groundwate	Soil Moistur	Samples	Те	sts	Instrument/ Backfill
+21.15	0.15	(TOPSOIL)	SILT, trace moist; low (<2mm) (1 SILT, mind and yellow plasticity; MEMBER 0.20m Gra	e clay, organics plasticity; orga OPSOIL) or to some clay rish-brown mot sand, fine to m SPRINGSTON ides to 'firm'.	s; greyish anics, roo r, trace s. ttling. Ve edium. (N FORM,	and; grey v ry soft; mo YALDHUR ATION)	/ery soft"; roots vith orang ist; low ST									ES0.1 × NOV	1,0,1, 0,1,1,2, 1,1,2,1,2, 1,1,2,2,1,2, 2,1,2,2,1,2, 2,1,2, 2,8		
	-	(YALDHURST MEMBER, SPRINGSTON FORMATION)	0.55m Tra 0.60m Gra	ce charcoal, bl	ack.			× × × × × × × × × × × × × × × × × × ×			<					ES0.5 NOV		✓ V= 230	
+20.30	- <u>1 1.00</u> -	1.00 EOH @ 1.00 m											1.00m			ES0.95 NOV	No. 2 6, 8, 10, 9, 6, 9, 8, 8, 9, 7, 5, 4, 7, 8, 6, 5, 6, 5		
	- - - - - - - - - - - - - - - - - - -	ns: netro mm	meter - est	● Sr □ La ■ U	mall Dist arge Dist 100 Undi	urbed Sam urbed Sam sturbed Sa	nple ample	GROUN X No Slo	IDWATER w Seep (dd	red			Image: Network of the second	Image: start	and e urvey s for	elevatio y confir	ns based on h mation. ive soil layers	and-held G	
	Schmidt Insitu Va V=Peak, WTP=Un dry; M =	Hamr ne Sh R=Re able to moist	ner lear Strength esidual, o penetrate :; W = wet; \$	∎ (kPa) ∎ (kPa) ∎ W ↓ W ↓ W ↓ W ↓ W ↓ W ↓ W ↓ W ↓	ater Stri ater Rise ise Time	ke (1st, 2n e (1st, 2nd (minutes)	d)) and	HOLE T	ERMINATE	depth) ED DUE TC] Refusal	D:	ollapse	shear van cohesive s Scala test	e test soil str result	wher rengt ts an	re avail th terms id indica	able. Where n s are based or ated in quotati	o shear van l correlation on marks.	e, with
i satu All	dimens	ons le 1·	in metres	Contract	or:				Rig/P Hand	lant Used: Auger 70	: mm						Logged by:	Checke	ed by: C

2	RI	ULTA and Ge	NTS ologists F	Riley Cor 2 Moorhouse hristchurch el: +643 379 ax: +643 37	n sultar ∍ Ave 94402 '94403	nts								HAN	D	A	UC	SER LO	OG	
Proj Sun Job	ect: nmerse No.:	Ran	igiora Du	e Diligen Start D	ate:	20-12	Location: Townsend 2-18 Gi	l Rd/ roun	/South	Belt,	Rangio LINZ):	ora Co-Ordir	Hole Reference	to Site Pla TM2000):	n.			⊾ H	lo.: 406	
Clie	nt:	0743		Finish	Date:	20-12	2-18		21.3 Hole D	30 Depth	1:	E1	,566,673.	8 N 5,203	,632	2.4		Sheet:		
V	Velhom	Deve	elopments	s Ltd					1.00	m								2	of 2	
(m LINZ)	Depth (m)	Geological Unit	(refer Inf	Geoloc to separat ormation s	gical D e Geote sheet for	Descrip echnica or furthe	o tion I and Geologi r information)	ical	Leaend	S	oil Shea (kl 50 100	r Strength Pa) 150 200	Scala Pe (blows 3 6	enetrometer ; / 50 mm) 9 12 1	ம Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
	-2													2.00m						
	planatio Scala Pe blows/50 Permeal Schmidt Insitu Va V=Peak,	ns: metror mm bility Tr Hamn ne Sh R=Re able to moist	neter - est ear Strengtl esidual, o penetrate ; W = wet; S	• (kPa)	Sma Large U100 Wate Wate	II Distur e Distur 0 Undis er Strike er Rise : Time (rbed Sample rbed Sample turbed Sampl e (1st, 2nd) (1st, 2nd) minutes)	le) and	GROL X N SI R HOLE	JNDV Not E Iow S apid	VATER ncounter Geep (de Inflow (d MINATE epth X	red epth) depth) CD DUE TO: Refusal	Collapse	Remark 1. Coordin: and subjec 2. Strength shear vane cohesive s Scala test	ates a ates a t to s t term t test oil stu result	and e surve ns for whe rengt ts an	elevatic y confir cohes re avail h terma d indic	Ins based on ha mation. ive soil layers a able. Where nc s are based on ated in quotatic	and-held GP are based or s shear vane correlation n marks.	PS n s, with
All	urated dimens Sca	ons i le 1:	n metres 10	Cont	ractor	:					Rig/Pl Hand	ant Used: Auger 70 n	าm					Logged by: AvD	Checker CF(d by: C

		RI	ULTA and Ge	NTS ologists Ril 22 f Chri Tel: Fax	ey Consult Moorhouse Ave istchurch +643 3794402 :: +643 3794402	ants											HAI	ND	A	UG	GER	LC	DG	
Pro Su	ject mm	: ierset	Rar	ngiora Due	Diligence	-	Locatio	on: send Rd	/Sout	th Be	elt, R	angio	ra		Ho	le po efer t	sition: o Site F	Plan.				Ν	o .:	
Job	No).: 17()743		Start Date: Finish Date	18- e: 18-	-12-18 -12-18	Groun	nd Lev 24	vel (r 4.50	m LII	NZ):	Co-	Ordin E 1,	ates (1 566,20	NZTN 67.9	//2000) N 5,2	: 03,47	8.6			HÆ	07	
	ent: Wel	hom	Deve	elopments l	Ltd				Hole 1.2	e Dep 25 m	oth:		1								Sheet	: 1 (of 1	
Elevation	(TINC)	Depth (m)	Geological Unit	(refer to Infor	Geological separate Ge mation sheet	Desc otechni for furt	ription cal and Ge her informa	ological tion)		Legend	Soil :	Shea (kF	Stre Pa)	ngth	Scal: (bl	a Pen ows /	etromete 50 mm) 9 12	r Groundwater	Soil Moisture	Samples		Tes	ts	Instrument/ Backfill
+24.1	-	0.35	(TOPSOIL)	SILT, trace soft"; moist;	clay, organics low plasticity	; greyis ; organ	h brown. "\ ics, rootlets	Very soft t	o NL) シ ン レ ン ン レ											ES0.1 NOV	No. 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 4, 5	0, 1, 1, 1, 1, 3,		
	-		SPRINGSTON FORMATION)	SILT, minor and yellowis plasticity; sa MEMBER, \$ 0.50m Grad	with orang ; low RST	ge x x	× × × × × ×										ES0.5 NOV			\/- 128				
HT Professional +53	0.70m Grades to very stiff.									× × × × × × ×			< 			 						~	v= 128 R= 43	
0/01/2019 09:33 Produced by	-	1 25		Sandy grave orange mott fine to medi coarse.	elly SILT, traco ling. Medium um, subround	e clay; dense; led, gre	light greyisl ⊨ moist; dila eywacke; sa	h brown w Itant; grav and, fine to	vith el, × o × × ×	°.×. °.×. °.×. °.×. °.×.							- $ -$	···· ··· →			2, 3, 15, 7 3, 2, 3, 5, 11, 1 8, 8, 12, 1	- 3, 3, 4		
21 HA 170743 SS-KANGIORA ALL LUGS. GPU <	3.25 1.25 - EOH @ 1.25 m EOH @ 1.25 m 									<u> </u>											V			-
E)	xpla Sc	natior ala Pe	IS: netro	meter -	● Sr	nple	GRC	DUNE Not	DWA Enco	TER	ed				Rema	arks dinates	and	elevatio	ons based	on hai	nd-held Gl	PS		
	blo Pe Sc Ins V= <u>oil W</u>	ows/50 rmeab hmidt situ Var Peak, <u>P=Un</u> oisture y; M =	mm Hamr he Sh R=Re able to moist	est ner ear Strength (esidual, p penetrate ; W = wet; S :	nple ample nd) d) and		Slow Rapi E TE arget	Enco / See id Infl ERMII	p (de ow (c NATE	eu pth) epth D DUE Refus) E TO: al] Colla	pse	and sub 2. Stren shear va cohesiv Scala te 3. Loca 4. Scala	iject to gth terr ane tes e soil s est resu ted on t a device	surve ms fo treng ilts ar idy k wet	ey confii r cohes re avail th term nd indic ept law below	mation. ive soil la able. Who s are base ated in qu n. 1.25m on	yers ar ere no ed on o iotatior extract	e based o shear van correlation n marks.	on ie, with			
	itural I din	^{ted} nensi Sca	ons e 1:	in metres 10				F H	Rig/Pla land /	ant Us Auger	sed: 70 m	m						Logged AvD	by:)	Checke CF	ed by: C			

2	RI CONS Engineers	ULT/ and Ge	EY ANTS Pologists	Riley Consu 2 Moorhouse Av Christchurch fel: +643 379440 fax: +643 37944	Itants								HAN	ID	A	UG	BER L	OG	
Proje	ct: merset	Rar	ndiora Du	e Diliaence		Locatio	on: Send Rd	South R	elt. Randi	ora		Hole p	to Site Pla	an			١	No.:	
Job N	lo.: 17(1743	3	Start Date	e: 18-	12-18	Groun	d Level	(m LINZ):	Co-Or	rdinat	es (NZ1	[M2000):	2 502	. 7		H	A08	
Clien	it:				le. 10-	12-10		Hole De	pth:		= 1,50	00,300.	5 IN 5,204	5,503	o. <i>1</i>		Sheet:		
W C		Dev E	elopment	s Ltd				0.70 m	ז 						0		1	of 1	
the catio (m LINZ	Depth (m	Geological U	(refer Int	Geologica to separate G formation shee	al Desc eotechniet for furth	ription cal and Ge ner informa	ological tion)	Legend	Soil Shea (k	ar Streng Pa) 150 200	th	Scala Pe (blows 3 6	enetrometer / 50 mm) 9 12	51 Groundwate	Soil Moistur	Samples	Te	sts	Instrument/ Backfill
+24.40	0.10	(TOPSOIL)	SILT, trac soft"; wet	e clay, organic low plasticity	s; greyis organics	h brown. "\ s, rootlets.	/ery soft to (TOPSOIL) <u>///</u> .) <u>// //</u>			,						No. 1 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,		
	-	URST MEMBER, SPRINGSTON FORMATION)	SILT, trac yellowish, sand, fine SPRINGS 0.20m Gr	e clay, trace s brown mottlin to medium. (TON FORMA ades to 'soft to	and; grey g. "Soft"; (ALDHUI FION) firm'. Ve	with orang moist; low RST MEME	je and plasticity; 3ER,	× × × × × × × × × ×								ES0.1 NOV	2, 1, 4, 9, 12, 14		
+23.80	- 0.70	(АЧГРН	0.60m Gr	ades to includ	e minor fi	ine to medi	um sand.	× × × × * ×		 		$\left. \right\} \left \left. \right] \right \left \left. \right \left \left. \right \right \left \left \left. \right \left				ES0.5 NOV		V= 141 R= 59	
	- 1																V		
Expl Expl	anation Scala Pe blows/50 Permeab Schmidt nsitu Va /=Peak, //Peak, // Peak, // Peak, // Peak, // Peak,	netro mm ility T Ham ne Sh R=Re able t moist	meter - rest mer sear Strengt esidual, o penetrate t; W = wet;	● S □ L ■ L ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Small Dis arge Dis J100 Und Vater Str Vater Ris Rise Time	turbed San turbed San listurbed S ike (1st, 2n se (1st, 2nd e (minutes)	nple nple ample Id) I) and	GROUN X No Slov Rap HOLE T Targe	IDWATER of Encounter w Seep (d bid Inflow (ERMINATI et depth X	ered epth) depth) ED DUE T Refusal		Collapse	Remar 1. Coordin and subje 2. Strengt shear van cohesive Scala test 3. Locatee mounds. 4. First ha abandone	ks hates a cct to s h term e test soil str t result d next and au	and e urve is for whe rengt ts an to sa ger a to e	elevatio y confir r cohes re avail th terms id indica awdust attempt ncounte	ns based on hi mation. ive soil layers a able. Where nu s are based on ated in quotatic mound and ne near south enc ering gravel (as	and-held Gl are based o o shear van correlation on marks. ar horse du d of gate ssumed fill).	PS on le, with ing
All d	limensi Sca	ons	in metres	Contrac	tor:				Rig/P	lant Use	d: 0 mm						Logged by:	Checke	ed by:

		RII CONS	JLTA and Ge	NTS ologists	iley Consultants Moorhouse Ave hristchurch 1: +643 3794402									HAN	D.	A	UG	ER LO	COG	
Pr	oject	erset	Par	aiora Due	Diligence	Locatio	n: end Rd/	South	Balt	Pano	iora		Hole p	osition:	'n			N	lo.:	
Jo	b No	170	7/2		Start Date: 17-	12-18	Groun	d Leve	el (m	LINZ)	: Co-	Ordina	ates (NZT	M2000):		_		H	409	
C	lient:				Finish Date. 17-	12-10		24. Hole I	.30 Depti	h:		E 1,	566,444.() N 5,203	,508	.5		Sheet:		
	Wel	hom	Deve	elopments	Ltd			1.25	5 m									1	of 1	
+4 Elevation	(ZNI m) .30	Depth (m)	Geological Un	(refer t Info	Geological Desc o separate Geotechnio prmation sheet for furth	ription cal and Geo ner informa	ological tion)	- Anand	S Legelu	oil She (50 10	ear Stre kPa) 00 150 2	ngth	Scala Pe (blows <u>3 6</u>	netrometer / 50 mm) <u>9 12 1</u>	ਯ Groundwater	Soil Moisture	Samples	Tes	ts	Instrument/ Backfill
				SILT, trace plasticity; o	clay, organics; dark b organics, rootlets. (TO	rown. "Soft PSOIL)	t"; dry; low	' <u>'</u>	<u>~</u>				•					2, 1, 0, 1, 1, 1, 1,		
+24	-	0.30	(TOPSOIL)	0.02m Gra 0.05m Gra	des to moist. des to minor clay.												ES0.1 NOV	1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 0, 4		
	-			SILT, minc and yellow plasticity; s MEMBER,	r to some clay, trace s ish-brown mottling. "S sand, fine to medium. SPRINGSTON FORM	and; grey v oft"; moist; (YALDHUR ATION)	with orang low tST	le × - × - × - × -	××××											
	-		MEMBER, SPRINGSTON FORMATION)	0.50m Gra	des to 'firm'.		- × - × - × - × - × - × - × - × - × - ×	× × × × × × × × × ×								ES0.5 NOV				
duced by gIN I Professional	_	1	(YALDHURST	0.90m Gra 1.00m Gra subrounde	des to very stiff. des to include minor g d, greywacke	ravel, fine t	to medium	x x x x x x x x x x x x x x x x x x x	× × × ×		 		/	 1.00m			ES0.9 NOV	No. 2 4, 4, 4, 3, 4, 6, 11, 14,	V= 164 R= 39	
23 +23	-	1.25		1.15m Gra gravel; nor	des to include minor to plastic; gravel, as abo	o some sar ove; sand, f	nd, trace fine.	×- ×- ×-	× × ×									14		
HA 1/0/45 55-KANGIOKA ALL LUGS.GFJ <	3.05 1.25 EOH @ 1.25 m													 				↓		-
	Expla	natior	IS:					GROL	UNDV	VATER	2			Remark	ś	<u> </u>				
	So blo Pe So Ins V= Soil W D = dr satura	ala Per ws/500 meab hmidt l situ Var Peak, Peune v; M = 1 ted	netror mm llity To Hamm ne Sh R=Re ble to moist	meter - est ear Strength sidual, penetrate ; W = wet; S in metres	Small Dis Large Dis U100 Und (kPa) KPa) Contractor:	turbed Sam turbed Sam listurbed Sa ike (1st, 2n se (1st, 2nd e (minutes)	nple nple ample id) I) and	X I S R HOLE	Not E Slow S Rapid E TER rget d	ncount Seep (d Inflow RMINAT Iepth	ered depth) (depth ED DUI (Refus Plant Us) E TO: sal	Collapse	1. Coordin. and subjec 2. Strength shear vane cohesive s Scala test	ates a ct to su terms test v coil stro results	and e urvey s for wher engtl s and	elevatior / confirr cohesi re availa h terms d indica	s based on ha mation. ve soil layers a able. Where no are based on ated in quotatio	nd-held Gi re based o shear van correlation n marks.	PS on with with

2	RI CONS Engineers	ULTA and Ge	NTS ologists Fa	iley Consulta Moorhouse Ave rristchurch I: +643 3794402 x: +643 3794403	ints						HANI	D A	AUC	SER LO	OG
Proje	ct: merset	Rar	ndiora Due	Diligence	Lo	cation:	1/South F	Belt Rangin	ra	Hole p	osition: to Site Plan	<u></u>		Ν	lo.:
Job	No.: 17()743		Start Date:	17-12-1 17-12-1	8 Grou	nd Level	(m LINZ):	Co-Ordin	ates (NZT	M2000):			H	A10
Clier W	nt: 'elhom	Deve	elopments	Ltd	17-12-1		24.0 Hole Do 1.10 r	epth: n		,300,323.0	IN 5,203,	513.0	0	Sheet: 1	of 2
(m LINZ)	Depth (m)	Geological Unit	(refer t Info	Geological I o separate Geo rmation sheet fo	Descriptio technical an further inf	on nd Geological formation)	Legend	Soil Shea (kł	r Strength Pa)	Scala Per (blows)	netrometer / 50 mm) 9 12 15	Groundwater	Soil Moisture Samples	Tes	st Instrument/ Backfill
+23.75	- 0.25	(TOPSOIL)	SILT, trace low plastici SILT, mino and yellow plasticity; s	clay, organics; ity; organics, roo r to some clay, ish-brown mottl and, fine to me	dark brown. tilets. (TOPS race sand; i dium. (YALE	"Firm"; moist SOIL) grey with oran moist; low DHURST	$\frac{1}{2} \frac{1}{2} \frac{1}$						ES0.1 NOV	No. 1 1, 1, 2, 2, 1, 2	
	O.60m Grades to hard. O.80m Grades to light grey with orange mottling.								 				ES0.5 NOV		V= 203 R= 46
+222.95 +222.95 +222.90	O.80m Grades to light grey with orange mottling. O.80m Grades to light grey with orange mottling.						* * * * * * * * * * * * * * * *						ES1.0 NOV	▼ No. 2 9, 10, 7, 8, 7, 9, 6, 7,	
H A 1/0/43 SS-KANGIORA ALL LUGS.GPJ < <td>-</td> <td></td> <td>EOH @ 1.1</td> <td>10 m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7, 5, 6, 5, 8, 9, 12, 20</td> <td></td>	-		EOH @ 1.1	10 m										7, 5, 6, 5, 8, 9, 12, 20	
Exp	lanation	ns:		• •		d Constants	GROU	NDWATER			Remarks	s			
a 1 NZ LIB 13.GLB Log RILE □ S □ □ S	Scala Pe blows/50 Permeab Schmidt Insitu Var V=Peak, WoistUré dry; M =	netroi mm ility T Hamr ne Sh R=Re able to moist	meter - est ner ear Strength esidual, o penetrate ; W = wet; S	● Sm. Larg U10 (kPa) ♥ Wa Ţ Wa Ţ Risc	all Disturbed ge Disturbed 10 Undisturb ter Strike (1: ter Rise (1si e Time (min	d Sample d Sample bed Sample st, 2nd) t, 2nd) and nutes)	X No Slo Ra HOLE T Targ	ot Encounter ow Seep (de pid Inflow (d FERMINATE et depth X	ed pth) lepth) D DUE TO: Refusal	Collapse	1. Coordina and subject 2. Strength shear vane cohesive so Scala test rr 3. Located 4. Scala roc	tes and terms terms test who bil strer esults on tidy d wet b	d elevation vey confi for cohese here avait ngth term and indice kept law below 1.5	ons based on ha rmation. sive soil layers a lable. Where no s are based on ated in quotatio n. Om on extraction	and-held GPS re based on shear vane, correlation with n marks. n.
	^{rated} limensi Sca	ons e 1:	in metres 10	Contracto	r:			Rig/Pl Hand	ant Used: Auger					Logged by: RBW	Checked by: CFC

2	R CONS Enginee	SULTA s and Ge	Ril 22 M 22 M Chri Tel: Fax:	ey Cons Noorhouse A stchurch +643 3794 ± +643 3794	ave 402 4403									HAN	D	A	UG	SER L	OG	
Proj Sur	ect: nmerse No :	t Rar	ngiora Due	Diligenc Start Da	e te [.] 17	Locatio Towns	n: end Ro	l/Sou	ith B	elt, Ranç m LINZ	giora	ı Co-Ordir	Hole p Refer	osition: to Site Plai M2000) [.]	n.			N H	lo.: Δ1Λ	
	17	0743	i i	Finish D	ate: 17	-12-18	Crou	2	24.00)		E 1	,566,523.0	N 5,203,	,513	3.6		11/		
Clie V	ent: Velhom	Deve	elopments l	_td				Hol	e De 10 m	pth: 1								Sheet: 2	of 2	
БŃ	Ì Ê	Unit							77						ter	are	s			
(m LIN	Depth (I	Geological	(refer to Infor	Geologi separate mation sh	cal Des Geotechr eet for fur	cription nical and Geo ther information	ological tion)		Legen	Soil She	ear \$ (kPa _{00 1}	Strength) 50 200	Scala Pe (blows) 3 6	netrometer / 50 mm) 9 12 1	دم Groundwa	Soil Moist	Sample	Tes	sts	Instrumen Backfill
	- 2 - 2 																			
		<u> </u>																		<u> </u>
	planatic Scala P blows/5 Permea Schmid Insitu V V=Peak il Woistul = dry; M =	ns: enetro Dmm bility T Hamr Hamr ane Sh , R=Re able to moist	meter - est ner lear Strength (esidual, o penetrate ;; W = wet; S =	• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Small Di Large Di U100 Ur Water S Water R Rise Tin	isturbed Sam isturbed Sam disturbed Sa trike (1st, 2n tise (1st, 2nd ne (minutes)	nple nple ample d)) and	GR X HO	OUN] No] Slov] Rap LE TI Targe	DWATEI t Encoun w Seep (id Inflow ERMINA ⁻ et depth	R (dept (dept TED X R	d h) pth) DUE TO: tefusal	Collapse	Remark 1. Coordina and subjec 2. Strength shear vane cohesive so Scala test r 3. Located 4. Scala roo	s ates a t to s term test oil str result on tio d we	and e surve surve whe rengt ts ar dy ke t bel	elevatic y confir r cohes re avail th terma nd indic ept lawn ow 1.50	ons based on ha mation. ive soil layers a able. Where a s are based on ated in quotatio n. Om on extractio	and-held GF are based of b shear vane correlation on marks. n.	PS n e, with
All	urated dimens Sca	in metres 10					Rig/ Han	/Plar Id Au	nt Used: Iger						Logged by: RBW	Checke CF	d by: C			

2	RI CONS Engineers	ULT/ and Ge		Riley Consults 22 Moorhouse Av Christchurch Tel: +643 37944 Fax: +643 37944	ultants	_		_							HA	ND	A	UG	SER L	OG	_
Proje	ect:	Rar	ndiora Du	e Diligence		Locatio	on: Send Rd/	South F	Belt I	Randi	ora		H	ole po	sition:	Plan			١	No.:	
Job I	No.: 17)743		Start Date	e: 20-	12-18	Groun	d Level	(m L	.INZ):	Co	-Ordir	nates ((NZTN	12000)): ()2 E2	77		H	A11	
Clie	nt:	-	, 		ite. 20-	12-10		Hole De	epth:			E 1	,000,0	507.1	IN 3,2	03,53	1.1		Sheet:		
N L	/elhom	Deve	elopment	s Ltd				0.80 r	n 							-	a		1	of 1	
multiple (m LINZ	Depth (m	Geological U	(refer In	Geologic to separate G formation she	al Desci eotechnic et for furth	r iption cal and Ge per informa	ological ition)	Legend	Soi	I Shea (k	ar Stre Pa)	ength 200	Sca (t	ala Pene blows / {	etromete 50 mm) 9 12	Eroundwate	Soil Moistur	Samples	Te	sts	Instrument/ Backfill
+22.25	- 0.15	(TOPSOIL)	SILT, trac soft"; moi (TOPSOII	e clay, organi ist; low plastic L)	cs; dark b ity; organi	rown. "Ver cs, rootlets	y soft to s.		/										No. 1 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3,		
	-		SILT, min and yellov plasticity; MEMBEF	or to some cla wish-brown m sand, fine to R, SPRINGSTO	ay, trace s ottling. "S medium. (DN FORM	and; grey v oft"; moist; (YALDHUF ATION)	with orang ; low {ST	e × ×	-				• • •					ES0.1 NOV	12, 15		
	-	SPRINGSTON FORMATION)	0.30m Gr	ades to "stiff".			-														
	-	(YALDHURST MEMBER,	0.60m Gr	ades to light g	ttling.	* * × × × × × × × × × × × × × × × × × ×	-		 × 							ES0.5 NOV		, V= 172 R= 43			
. 04.00			0.75m Gr	ades to includ	e minor m	nedium gra	avel,	× ×	-				+					ES0.75			
+21.60	0.80		EOH @ 0	ed, greywacke 1.80 m	e. very su								• 			i		NOV			
	-																				
	- 1											l l			0.9	5m 🕈			V		
											Ì	l				ļ					
	-																				
	-															İ					
											l										
	-										Ì	Ì		Ì		Ì					
	-													l							
															i i I I	i					
	-															i					
Exp	lanatio	ns:						GROUM		ATER					Rem	arks		<u> </u>			
Į <u>▼</u> .	Scala Pe blows/50	netro mm	meter -		Small Dist .arge Dist	turbed San turbed San	nple nple	X No	ot En	counte	red				1. Coor and sul	dinates	and	elevatio ey confir	ns based on h mation.	and hand G	€PS
▼	Permeat Schmidt Insitu Va	ility T Hamr ne Sh	est ner lear Strend	th (kPa)	J100 Und Nater Stri	isturbed Si ike (1st, 2n	ample nd)	Slc	ow Se pid Ir	ep (den flow (epth) depth)			2. Strer shear v cohesiv	igin tern ane test /e soil st	whe whe treng	th terms	able. Where not a safe based on a stand in the safe based on a stand in th	are based o o shear van i correlation	มา ne, n with
Soil	V=Peak, UTP=Un	R=Re	esidual, o penetrate		Nater Ris Rise Time	e (1st, 2nd (minutes)	1) and	HOLE 1	TERN	/INATE	ED DU	IE TO:	: Colli	apse	Scala t	est resu	its ar	na Indic	ated in quotatio	on marks.	
D =	dry; M = trated dimensi	moist	in metres	s =	ctor:					Rig/P	lant L	Jsed:							Logged by:	Checke	ed by:

2	RI CONS Engineers	ULT/ and Ge	NTS NOIOgists	Riley Consul Moorhouse Ave hristchurch el: +643 3794402 ax: +643 379440	tants	_			_					HAN	ID	A	UC	GER L	OG	_
Proje	ct:	Por	ndiora Dur	Diligence		Locatio	n:	South	Relt	Rancio	ra		Hole p	osition:	an			N	lo.:	
Job N	No.: 17	1741		Start Date	20-	12-18	Groun	d Level	l (m L	INZ):	Co-Ordi	inate	s (NZT	M2000):	an.			H	412	
Clier W	nt: elhom	Deve	elopments		e. 20-	12-10		21.5 Hole D 0.95	ou Depth: m			1,50	0,094.0	N 5,20	3,555	0.4		Sheet: 1	of 1	
ion (Z)	Ê	Unit						σ							ater	ture	SS			īt/
(m LIN (m LIN +21.50	Depth (Geological	(refer Info	Geologica to separate Ge ormation sheet	l Desci otechnic for furth	ription al and Ge er informa	ological tion)	Legen	Soi	l Shea (kF 50 100	r Strength ² a) <u>150 200</u>	1	Scala Per (blows)	9 12	impunou 15	Soil Mois	Sample	Tes	sts	Instrumer Backfill
+21.35	- 0.15	(TOPSOIL)	SILT, trace soft"; mois (TOPSOIL	e clay, organice t; low plasticit)	s; dark b y; organi	rown. "Ver cs, rootlets	y soft to s.										ES0.1 NOV	NO. 1 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 3, 8, 8		
	-	(YALDHURST MEMBER, SPRINGSTON FORMATION)	SILT, mind and yellow (surface in sand, fine SPRINGS 0.60m Lig	or to some clay ish-brown mo filtration after r to medium. (Y TON FORMAT	r, trace s ttling. "S ain); Iow ALDHUF ION)	with orang to wet n plasticit BER,	e y; x x x x x x x x x x			 						ES0.5 NOV	8,8	. V= 167 R= 34		
+20.55	- - 0.95 - 1 - - - -		0.90m Gra gravel, sut EOH @ 0.	ides to include <u>rounded, grey</u> 95 m	trace to wacke.	minor fine	to mediu	n x					$ \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot $		· · · · · · · · · · · · · · · · · · ·		ES0.9 NOV	No. 2 11, 12, 10		
	lanation Scala Pe blows/50 Permeat Schmidt Insitu Va V=Peak, WTP=Un Moisture	netro mm illity T Hamr ne Sh R=Re able to	meter - est ner ear Strength esidual, o penetrate	● SI □ La ■ U 1 W 1 W 2 R	mall Dist arge Dist 100 Und /ater Stri /ater Ris ise Time	urbed San urbed San isturbed Sa ke (1st, 2n e (1st, 2nd (minutes)	nple nple ample id) I) and	GROU X N Slo Ra HOLE	INDW lot En- ow Se apid Ir TERN	ATER counter ep (de iflow (c 1INATE	ed pth) lepth) D DUE TC Refusel):]	ollanse	Remar 1. Coordi and subje 2. Streng shear var cohesive Scala tes	ks nates a ect to s th term ne test soil sti t resul	and o surve ns fo whe reng ts ar	elevatic y confi r cohes re avai th term nd indic	ons based on ha rmation. sive soil layers a lable. Where no s are based on ated in quotatic	and hand G are based o shear van correlation n marks.	iPS in e, with
All c	dry; M = rated limensi Sca	moist ons le 1:	;; W = wet; S in metres 10	S =	or:					Rig/Pland	ant Used:	mm						Logged by: AvD	Checke	d by: C
2	RI CONS Engineers	JLT/ and Ge	ANTS Pologists Fax	ley Consulta Moorhouse Ave istchurch : +643 3794402 : +643 3794403	nts						HAN	D	AU	G	ER LO	C				
-------------------------------------	---	--	--	--	--	---	----------------------------------	--	---------------------------	-----------------------	---	--	---	--	---	--------------------------------------	-------------			
Proje	ct:	Por		Diligonoo	Locat	tion:	South P	olt Dongi		Hole po	osition:	2			N	0.:				
Job N				Start Date:	18-12-18	Groun	d Level ((m LINZ):	Co-Ordir	nates (NZT	M2000):	1.			HA	\13				
Clien	170 t·	0743		Finish Date:	18-12-18		23.20 Hole De) epth:	E 1	,566,374.5	N 5,203,	418.	2		Sheet:					
W	elhom	Deve	elopments	Ltd			0.45 m	1							1	of 1				
Elevation (m LINZ)	Depth (m)	Geological Unit	(refer to Info	Geological I separate Geot mation sheet fo	Description echnical and C or further inform	Geological nation)	Legend	Soil Shea (k	r Strength Pa)	Scala Per (blows /	netrometer 50 mm)	n Groundwater	Soil Moisture	Samples	Tes	strument/	Backfill			
A = U +23.20 +23.05 +22.75	- 0.15 - 0.15 - 0.45 	(YALDHURST MEMBER, SPRINGSTON FORMATION) (TOPSOLU	(refer tr Info SILT, trace low plastici and yellowin medium pla MEMBER, Refusal on EOH @ 0.4	separate Geol mation sheet fo clay, organics; ly, organics, roc to some clay, t sh-brown mottli isticity; sand, fir SPRINGSTON I inferred cobble. 5 m	echnical and (or further inform dark brown, "S dark brown, "S titets. (TOPSO race sand: gre ng. "Stiff"; moi te to medium. FORMATION)	Geological nation) tiff"; moist; IL) y with orang st; low to (YALDHURS)			150 200	(blows /	50 mm) 9 12 1	Ground	OM IIOS	Zami	Tes					
Expl Expl F Soil Soil	- anatior Scala Pe Jows/50 Permeab Schmidt I nsitu Var /=Peak, //	ns: metro mm lity T Hamr ne Sh R=Re ble to moist	meter - est ner sear Strength ssidual, o penetrate ;; W = wet; S	● Sma □ Larg ■ U10 (kPa) ↓ Wa ↓ Wa ↓ Rise =	all Disturbed S je Disturbed S 0 Undisturbed ter Strike (1st, ter Rise (1st, 2 a Time (minute	ample ample Sample 2nd) nd) and s)	GROUN X No Slov Rap HOLE T Targe	DWATER t Encounte w Seep (de pid Inflow (ERMINATE	red epth) DDUE TO:	Collapse	Remark: 1. Coordina and subject 2. Strength test results	S attes at to su terms and i	nd elev rvey cc for co ndicate	ations onfirma hesive d in qu	based on ha ation. soil layers a jotation mark	nd hand GPS re based Scala (s.	- - -			
All d	ary; M = moist; W = wet; S = I dimensions in metres Contractor: Rig/Plant U													Lo	ogged by:	Checked b	y:			

2	RI CONS Engineers	ULT/ and Ge	EY ANTS cologists	Riley Consu 22 Moorhouse Ave Christchurch Fel: +643 379440 Fax: +643 379440	ltants										H	ANI	D	A	UG	SER L	OG	
Proje Sum	ct: merset	Rar	ngiora Du	e Diligence		Locatio Towns	on: send Ro	/South	Beli	t, Ran	igiora			Hole Refe	positioner to Si	n: te Plar	۱.			١	No.:	
Job N	lo.: 17()743	3	Start Date Finish Dat	: 21- e: 21-	12-18 12-18	Grour	nd Leve 26.	el (m 70	n LINZ	<u>z):</u>	Co-Orc E	dinate 1,56	es (NZ 6,464	TM20 .6 N	00): 5,203,4	422	.0		H	A14	
Clien W	t: elhom	Dev	elopment	s Ltd				Hole D	Dept m	th:										Sheet: 1	of 1	
lo IZ	Ê	Unit							5								iter	ure	s			ť
(m LIN +26.70	Depth (Geological	(refer In	Geologica to separate Ge formation shee	I Desc eotechni t for furth	ription cal and Ge her informa	ological tion)	Leden	S S S S	Soil Sh	near S (kPa 100_1	Strengtl) 50 200	h	Scala F (blow <u>3 6</u>	Penetror /s / 50 m 8 9	neter im) <u>12 1</u> 5	Groundwa	Soil Moist	Sample	Te	sts	Instrumen Backfill
	_		SILT, trac soft"; moi (TOPSOII	e clay, organic ist; low plasticit L)	s; dark b y; organ	prown. "Ver ics, rootlets	y soft to s.		<u>× </u>				Ļ							No. 1 0, 1, 1, 1, 0, 1, 2, 1, 2, 1, 2, 2,		
	-	(TOPSOIL)						<u>// \</u>	 <u>_ /</u> 				+						ES0.1 NOV	1, 5, 12, 8, 8, 16		
+26.40	0.30		0.25m Gr	ades to "firm".				<u>た</u> 、 ル	<u>, , , , , , , , , , , , , , , , , , , </u>				ľ,									
	_	VGSTON FORMATION)	SILT, min and yellov plasticity; MEMBEF	or to some cla wish-brown mo sand, fine to n R, SPRINGSTO	y, trace s ittling. "F nedium. N FORM	sand; grey v 'irm"; moist (YALDHUF IATION)	with oran ; low &ST		×××													
	-	RST MEMBER, SPRIN							× × × ×										ES0.5 NOV		V= 134	
+26.05	0.65	WALDHUF	0.60m Gr medium s	ades to include sand. Very stiff	e some c	clay and tra	ce fine to	×	×	▲ 	× 										R= 36	
	_		EOH @ 0	0.65 m						Ì												
	-																					
	_															 0.90m* 				¥		
	-1										 											-
	_																					
	_																					
	_																					
	_																					
	-										 											
Expl	anation Scala Pe	ns: netro	meter -	• s	mall Dis	turbed San	nple	GROU	JND	WATE	R				R	emarks	S tes c	and o		ns based on h	and band C	
	olows/50 Permeab	mm ility T	est		arge Dis 100 Und	turbed San listurbed Sa	nple ample		NOT E	≟ncoui Seep	ntered (deptl	ו)			2. S	subject strength ar vane	to si term	urvey s for wher	y confir cohes re avail	mation. ive soil layers a able. Where n	are based o o shear van	on ie,
	⊳cnmidt nsitu Va /=Peak	Hami he Sh R=Ri	ner iear Strengt esidual.	th (kPa) 🛓 V <u>1</u> V	/ater Str ∕ater Ris	rike (1st, 2n se (1st, 2nd	nd) I) and	R	apid	I Inflow	v (dep	oth)	_		coh	esive so la test re	oil str esult	engt s an	h terms d indic	s are based on ated in quotation	correlation on marks.	with
<u>Soil</u> D = 0	<u>Moisture</u> dry; M =	ble t	o penetrate ; W = wet;	⊊ F S=	tise Time	e (minutes)	[HOLE Tar	TEF get o	RMINA depth	X R	DUE To efusal	0: C	ollaps	e							
All d	^{rated} limensi	ons e 1·	in metres	Contrac	tor:		I			Rig	/Plan	t Used der	l:							Logged by:	Checke	d by:

2	RI CONS Engineers	ULT/ and Ge	EY ANTS Pologists	Riley Consul 2 Moorhouse Av hristchurch el: +643 379440 ax: +643 37944	ultants e 02 03								HAN	١D	A	UC	GER L	OG	
Proje	ct:	Por		Diligonoo		Locatio	n:	/South I	Polt Done	ioro		Hole p	osition:	lon			١	No.:	
Job N	lo.: 17()743		Start Date	e: 21-	12-18 12-18	Grour	id Level	(m LINZ)	: Co-Ordi	inates	6 (NZT	M2000):	13 436	3.4		H	A15	
Clien	t: elhom	Deve	elopments	s Ltd				Hole D 0.70 i	epth: n		1,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110,20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Sheet: 1	of 1	
Elevation (m LINZ)	Depth (m)	Seological Unit	(refer Inf	Geologica to separate G ormation shee	al Desci Geotechnic et for furth	r iption cal and Ge ler informa	ological tion)	Legend	Soil She	ear Strength kPa)	s	icala Per (blows /	netrometer 50 mm)	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
+24.70	-	(TOPSOLL)	SILT, trace low plastic	e clay, organic ity; organics,	cs; dark b rootlets.	rown. "Sof (TOPSOIL)	t"; moist;)			10 150 200 	• • •	3 6 	9 12 	15 - 		ES0.1 NOV	No. 1 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 6, 13, 20		
+24.45	-	SPRINGSTON FORMATION)	SILT, mind and yellow plasticity; MEMBER	or to some cla vish-brown me sand, fine to r , SPRINGSTC	ay, trace s ottling. "S medium. (DN FORM	and; grey (tiff"; moist; YALDHUF ATION)	with orang low RST		- - - - - - -										
+24.00	- 0.70	(YALDHURST MEMBER, S	0.50m Gra 0.60m Gra	ades to some ades to very s	clay. tiff.			× × × × × × × × ×	- - - - - - - -							ES0.5 NOV		, V= 195 R= 49	
	- 1 - 1 -			70 m															-
Expl Expl	anation Scala Pe Dolows/50 Permeab Schmidt nsitu Va /=Peak, Moisture dry; M =	netro mm ility T Hamr ne Sh R=Re able t moist	meter - est ner esar Strength esidual, o penetrate t; W = wet; S	• 5 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	Small Dist Large Dist J100 Und Water Stri Water Ris Rise Time	turbed San curbed San isturbed S ike (1st, 2n e (1st, 2nd (minutes)	nple nple ample id) i) and	GROUI	NDWATER ot Encount ow Seep (in upid Inflow TERMINAT	ered depth) (depth) ED DUE TO): Cc	llapse	Rema 1. Coord and subj 2. Streng shear va cohesive Scala ter	rks inates a ect to s gth term ne test a soil st st resul	and e surve ns for whe rengt its an	elevatic y confii r cohes re avail th term id indic	ons based on ha rmation. ive soil layers a lable. Where no s are based on ated in quotatic	and hand G are based o o shear van correlation on marks.	PS ۳۵ ۱۳۹۶, with
All d	imensi Sca	ons le 1 [.]	in metres 10	Contrac	ctor:				Rig/ Hand	Plant Used: d Auger							Logged by: RBW	Checke	d by: C

2	RI CONS Engineers	ULT/ and Ge		Riley Cons 22 Moorhouse / Christchurch Fel: +643 3794 Fax: +643 379	Ave 402 4403										HA	ND) Δ	U C	SER	LOG	
Projec	ct: merset	Ra	ndiora Du	e Diligenc	e	Locatio	on: send Rd	l/South	Relf	Rand	iora		H	lole po Refer t	sition:	Plan				No.:	
Job N)74?		Start Da	- te: 21	-12-18 -12-18	Grour	nd Leve	el (m	LINZ):	: C	o-Ordi ⊏ 1	nates	(NZTN	/2000): 202 //	52.1			HA16	
Clien	t:			s I td				Hole [Dept	h:			1,000,0	024.0	N 0,	200,4	JJ. 1		Sheet:	1 of 1	
л Го П		Juit						0.70									ler Ire	s			
0.02+ (m LIN	Depth (r	Geological I	(refer In	Geologi to separate formation sh	cal Des Geotechr eet for fur	cription nical and Ge ther informa	eological ation)			oil She (I <u>50 10</u>	ear St kPa) 10 150	rength	Sca (I	ala Pen blows / 6	etrome 50 mm 9 1:	er) 2 15	Soil Moist	Sample		Tests	Instrument Backfill
+20.65	- - 0.25	(TOPSOIL)	SILT, trac moist; lov	e clay, organ v plasticity; c	nics; dark organics, r	brown. "Vei ootlets. (TO	ry soft"; PSOIL)											ES0.1 NOV	No. 1 1, 0, 1 1, 0, 1 2, 1, 2 1, 0, 1 1, 2, 4 10, 10 8, 7, 8	, , ,	
	-	R, SPRINGSTON FORMATION)	SILT, min and yellou plasticity; MEMBEF 0.45m Gr	or to some o wish-brown r sand, fine to R, SPRINGS ades to "soft	lay, trace nottling. " o medium FON FOR	sand; grey Firm"; mois . (YALDHUF MATION)	with orang t; low RST	ge X - X - X - X - X - X - X -	× × × × ×												
+20.20	- 0.70	(YALDHURST MEMBER	0.60m Ve 0.65m Sa	ery stiff. and, fine.					× × × × ×		 					 50m ► 		ES0.5 NOV	V	∨ V= 136 ≻ R= 45	
	- 1 - -															 			No. 2 10, 10 11		
Expl Expl	- anatior Scala Pe Iows/50 Permeab Schmidt I nsitu Var	netro mm ility T Hami ne Sh	meter - Test mer near Strengt	• ■ th (kPa) ₹	Small Di Large Di U100 Ur Water S Water R	sturbed Sar sturbed Sar idisturbed S trike (1st, 2n ise (1st, 2n	mple mple sample nd)	GROL X I S R	JND Not E Slow S Rapid	WATER	ered depth (dept) h)			Ren 1. Coc and su 2. Stre shear cohes Scala	narks ordinate ubject to ength te vane te ive soil test res	s and o surv rms fe st wh streng	elevatii ey confi or cohe: ere ava gth term and indii	ons based o irmation. sive soil laye ilable. When s are based cated in quot	n hand-held (rrs are based e no shear va lon correlatio tation marks.	GPS on ine, on with
D = c Soil ^l D = c All d	Iry; M = ated imensi	mois	o penetrate t; W = wet; in metres	s = <mark>} Contra</mark>	Rise Tim	e (minutes))[HOLE Tar	TEF	RMINAT	ED D Re Plant	UE TO fusal Used:	: Coll	apse	auger (assur	attemp ned sev	ai all(abar ver pi	ipe bacl	due to enco (fill).	y: Check	ind ind ied by:

2	RI CONS Engineers	ULT/ and Ge	ANTS cologists Fax	iley Consulta Moorhouse Ave ristchurch : +643 3794402 x: +643 3794403	nts							HAN	ID	Al	JG	ER LO	OG	
Proje	ct: merset	Rar	ndiora Due	Diligence	Locati	on: send Rd	South P	elt Ran	niora		Hole p	osition:	an			Ν	lo.:	
Job N	lo.: 17()743	3	Start Date: Finish Date:	21-12-18 21-12-18	Groun	d Level	(m LINZ)): Co-(Ordina E 1,5	tes (NZ1	M2000): N 5,20	3,470	0.0		H	417	
Clien We	t: elhom	Deve	elopments	Ltd			Hole De 0.85 n	epth:								Sheet: 1	of 1	
01 (m LINZ)	Depth (m)	Geological Unit	(refer to Info	Geological [o separate Geot rmation sheet fo	Description technical and Ge or further information	eological ation)	Legend	Soil She	ear Strer (kPa) 00 150 2	ngth	Scala Pe (blows 3 6	netrometer / 50 mm) 9 12	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
+21.90	- 0.20	(TOP SOIL)	SILT, trace low plastici	clay, organics; ty; organics, roc	dark brown. "So ttlets. (TOPSOIL	ft"; moist; .)								EN	SS0.1	No. 1 1, 1, 1, 1, 0, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 6, 6, 6, 13		
	-	(TION)	SILT, minor and yellowi plasticity; s MEMBER,	to some clay, t sh-brown mottli and, fine to meo SPRINGSTON I	race sand; grey ng. "Firm"; mois dium. (YALDHU FORMATION)	with orang st; low RST												
	-	BER, SPRINGSTON FORMA	0.40m Grad	des to clayey.										EN	S0.5 V			
	-	(YALDHURST MEN	0.60m Grad	des to very stiff. s mottled.			× × ×		x 								. V= 138 R= 43	
+21.25	- 0.85		FOH @ 0.8	5 m			× ×							E	ES0.85 NOV			
	- - - -																	
Expl	anation	าร:	1				GROUN	IDWATE	<u>।</u> २			Remar	ks					<u> </u>
▼ S ▼ F × S Soil D = c	Scala Pe plows/50 Permeab Schmidt nsitu Va /=Peak, // Peak, // Officient dry; M = rated	netro mm ility T Hamr ne Sh R=Re able to moist	meter - iest ner lear Strength esidual, o penetrate t; W = wet; S		all Disturbed Sa ge Disturbed Sa 0 Undisturbed S ter Strike (1st, 2 ter Rise (1st, 2n e Time (minutes	mple mple Sample nd) d) and)	X No Slo Raj HOLE T Targo	ot Encoun w Seep (bid Inflow ERMINA	tered depth) (depth) TED DUE C Refus	TO:	Collapse	1. Coordii and subje 2. Streng shear var cohesive Scala tes	nates a ect to s th term ne test soil str t result	and ele urvey is for c where rength is and	evatior confirr cohesire availa terms i terms	ns based on ha mation. ve soil layers a able. Where no are based on ated in quotatio	and hand G are based o o shear van correlation n marks.	PS n e, with
All d	saturated All dimensions in metres Contractor: Rig/Plan Scale 1:10 Hand Au															Logged by: RBW	Checke	ia by: C

2	RI CONS Engineers	ULT/ and Ge		Riley Consul 22 Moorhouse Ave Christchurch Tel: +643 3794402 Tax: +643 379440										H	IAN	D	A	UG	ER LO	OG	
Projec	t: nerset	Rar	ndiora Du	e Diligence		Locatio	n: end Rd	/South I	Belt R	andior	a		Hole	e positi	tion: Site Pla	an			Ν	lo.:	
Job N	0.: 17()743		Start Date	: 21- e: 21-	12-18 12-18	Grour	nd Level	(m Lll	NZ):	Co-O	rdina F 1 5	ites (N	ZTM2	2000): N 5 202	3 362			H	A18	
Client We	t: elhom	Deve	elopment	s Ltd				Hole D 0.65 I	epth: n			L 1,0		0.0 1	10,200	,002			Sheet: 1	of 1	
Elevation (m LINZ)	Depth (m)	Geological Unit	(refer In	Geologica to separate Ge formation sheet	I Desci eotechnic t for furth	ription cal and Ge ner informa	ological tion)	Legend	Soil	Shear (kP	Strenç a)	gth	Scala (blov	Penetr ws / 50	ometer mm)	Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
+24 35	- - 0.25	(TOPSOIL)	SILT, trac low plasti 0.20m Gr	e clay, organics city; organics, r ades to "firm".	s; dark b ootlets.	rown. "Sof (TOPSOIL)	t"; moist;)											ES0.1 NOV	No. 1 1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 3, 3, 2, 3, 7, 11, 22		
	-	BER, SPRINGSTON FORMATION)	SILT, min and yellov plasticity; MEMBEF	or to some clay wish-brown mo sand, fine to m t, SPRINGSTOI	/, trace s ttling. "F iedium. (N FORM	and; grey v irm"; moist (YALDHUR ATION)	with orang ;; Iow RST														
+23.95	- 0.65	(YALDHURST MEM	0.50m Gr 0.60m Gr sand. Ver	ades to "stiff". ades to include y stiff.	trace to	minor fine	to mediu	m × ×	- - -									ES0.5 NOV		, V= 157 R= 46	
	- 1 - 1 - -														+.bom				V		
Expla Expla Solution Solution	anatior cala Pe lows/50 ermeab chmidt situ Var =Peak, <u>Noisture</u>	netroi mm ility T Hamr ne Sh R=Re able to	meter - est ner ear Strengt esidual, o penetrate	● Si □ La ■ U h (kPa) ↓ W ↓ R	mall Dist arge Dist 100 Und /ater Stri /ater Ris ise Time	turbed San turbed San isturbed Si ike (1st, 2n e (1st, 2nd e (minutes)	nple nple ample nd) I) and	GROUI	NDWA ot Enco ow See upid Infl TERMII get dep	TER puntere p (der ow (de NATEI	ed oth) epth) D DUE ⁻ Refusa	 TO:	Collaps	1 a 2 s c S	Remarl . Coordin nd subje . Strengti hear van ohesive s cala test	ks nates a ct to s h term e test soil str result	and e urvey is for wher rengt is an	elevatio y confir cohes re avail h term d indic	ns based on ha mation. ive soil layers a able. Where nc s are based on ated in quotatio	and hand G are based c o shear van correlation on marks.	PS on e, with
satur All di	ated imensi	ons e 1.	in metres	Contract	tor:					Rig/Pla	nt Use uaer	ed:	·						Logged by: RBW	Checke	ed by:

2	RI CONS Engineers	ULT/ and Ge	ANTS Hologists	Riley Consulta 2 Moorhouse Ave hristchurch el: +643 3794402 ax: +643 3794403	ants						ł	HAN	D	A	UG	ER L	OG	
Proje	ect: merset	Rar	ngiora Du	e Diligence	Locati	on: send Rd	/South F	Selt Randid	ora	H	ole pos	ition: Site Pla	an			Ν	lo.:	
Job	No.: 17(1743		Start Date:	21-12-18	Grour	nd Level	(m LINZ):	Co-Ordi	nates ((NZTM	2000):		7		H	A19	
Clie	nt:	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		. 21-12-10		Hole De	epth:	E1	1,000,0	000.7	N 5,203	6,355	0.7		Sheet:		
N	/elhom	Deve	elopments	s Ltd			0.90 r	n I		1						1	of 1	
(m LINZ)	Depth (m)	Geological Un	(refer Inf	Geological to separate Geo ormation sheet f	Description technical and Ge or further inform	eological ation)	Legend	Soil Shea (k	ar Strength Pa) 150 200	Sca (b	ala Pene blows / 5 6	trometer 0 mm) 9 12	5 Groundwater	Soil Moisture	Samples	Tes	sts	Instrument/ Backfill
+25.40	- 0.30 	(YALDHURST MEMBER, SPRINGSTON FORMATION) (TOPSOIL)	SILT, trac soft"; mois (TOPSOIL soft"; mois and yellow plasticity; MEMBER 0.50m Gra 0.60m Gra 0.70m Gra 0.70m Gra 0.85m Gra greywackt EOH @ 0.	e clay, organics; st; low plasticity;) or to some clay, rish-brown mottl sand, fine to me , SPRINGSTON ades to clayey; n ades to clayey; n ades to include t ades to include t <u>a</u>	dark brown. "Ve organics, rootlef trace sand; grey ing. "Stiff"; mois dium. (YALDHU FORMATION) nedium plasticity race fine sand.	ry soft to ts.									580.5 \ 580.5 \ 580.5 \	No. 1 1, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 10, 14, 20	, V= 184 R= 50	
Ext	lanatio	ns:					GROUM					Remarl	il (s					
	Scala Pe blows/50 Permeab Schmidt Insitu Va V=Peak, WBSUA dry; M = urated dimensi	netro mm ility T Hamr ne Sh R=Re able to moist moist	meter - eest ner eear Strengtl openetrate ;; W = wet; \$ m metres	• Sm Lar I U10 • (kPa) $\frac{1}{2}$ Wa Z Ris S = Contractor	all Disturbed Sa ge Disturbed Sa 00 Undisturbed S iter Strike (1st, 2 iter Rise (1st, 2n e Time (minutes	mple mple Sample Ind) id) and ;)	X No Slo HOLE 1 Targ	ot Encounte w Seep (de pid Inflow (ERMINATE et depth X Rig/P	red epth) depth) ED DUE TO Refusal ant Used:	: Colla	apse	1. Coordin and subje 2. Strengti shear van cohesive s Scala test	ates a ct to s n term e test soil str result	and el urvey is for where rength is and	levatior confirr cohesiv e availa terms l indica	ns based on ha nation. ve soil layers a able. Where no are based on ated in quotatio	and hand C are based o o shear var correlation on marks.	GPS on he, h with

2	RI CONS Engineers	JLT/ and Ge	EY ANTS Pologists	Riley Cons 2 Moorhouse hristchurch el: +643 3794 ax: +643 379	sultants ^{Ave} 4402 4403							HAN	D	AU	GEF	r L(DG	
Proje	ect:	Par	ngiora Du	Diligenc	20	Locatio	on: Send Rd	South B	elt Bandic	ra	Hole p	osition:	n			N	o.:	
Job N	No.:	742		Start Da	ate: 2	-12-18	Grour	nd Level	(m LINZ):	Co-Ordi	nates (NZT	M2000):			-	HÆ	\20	
Clier	nt:	1140	,		Jale. Z	-12-10		Hole De	pth:	E 1	,566,642.7	N 5,203	,365.	5	She	et:		
W	elhom	Dev	elopments	s Ltd				0.55 n	1		1						of 1	
the control (m LINZ)	Depth (m)	Geological Uni	(refer Inf	Geologi to separate ormation sh	ical Des Geotech neet for fu	cription nical and Ge ther informa	ological ttion)	Legend	Soil Shea (kl	r Strength Pa) 150 200	Scala Pe (blows) 3 6	netrometer / 50 mm) 9 12 1	сл Groundwater	Soil Moisture	Calling	Tes	ts	Instrument/ Backfill
+20.25	- - - - - - - - - - - - - - - - - - -	(VALDHURST MEMBER, SPRINGSTON FORMATION) (TOPSOIL)	SILT, trac soft"; mois (TOPSOIL SILT, min and yellov plasticity; MEMBER 0.45m Gra EOH @ 0	e clay, orga st; low plast) or to some c /ish-brown sand, fine t sand, fine t sand, fine t sand, fine t sand, fine t s55 m	nics; dark icity; orga	brown. "Ver nics, rootlets sand; grey Stiff"; moist (YALDHUR MATION) ard".	y soft to s. with orang ilow ST	$\begin{array}{c} 11 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$				9 12 1		ESO. NOV		>. 1 0, 1 1, 2 4, 3 13, 		
Exp V V Soil	lanatior Scala Pe blows/50 Permeab Schmidt Insitu Van V=Peak, Worsture	netro mm llity T Ham ne Sh R=Re	meter - rest ner near Strengti esidual, o penetrate	• ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Small D Large D U100 U Water S Water F Rise Tin	isturbed Sar isturbed Sar ndisturbed S trike (1st, 2r tise (1st, 2nc ne (minutes)	nple nple ample nd) 1) and	GROUN X No Slov Rap HOLE T	IDWATER It Encounter w Seep (de bid Inflow (d ERMINATE	red pth) DDUE TO	:	Remark 1. Coordina and subjec 2. Strength Scala test	ates ar t to su terms results	nd eleva rvey cor for coh and inc	tions bas nfirmation esive soil licated in	ed on ha layers a quotation	nd hand GP re based on n marks.	 5
D = satu All c	dry; M = rated dimensi	noisi	t; W = wet; S in metres	S =	actor:		[Rig/Pl	ant Used:					Logg	ed by:	Checked	by:

2	RI CONS Engineers	ULT/ and Ge	ANTS rologists Rologists	ley Consulta Moorhouse Ave istchurch : +643 3794402 c: +643 3794403	ants								HAN	١D	A	UG	SER L	OG
Proje	ct:	Rar	ndiora Due	Diligence		Locatio	n: end Rd/	South F	Selt Rano	iora		Hole p	osition:	lan			١	No.:
Job N	No.: 17()74.9		Start Date:	21-* • 21-*	12-18	Groun	d Level	(m LINZ)	: Co-Or	dinate	es (NZ)	M2000):	3 20-	1 1		H	A21
Clier	nt:		I		. 21	12 10		Hole De	epth:		_ 1,50	0,720.3	9 11 3,20	3,39	1.1		Sheet:	
W F		Deve	elopments	Ltd				0.55 n	n 					-	n		1	of 1
(m LINZ	Depth (m	Geological U	(refer to Info	Geological separate Geo mation sheet f	Descr technic or furth	iption al and Geo er informa	ological tion)	Legend	Soil She (ear Streng kPa) 150 200	th	Scala Pe (blows 3 6	enetrometer / 50 mm) 9 12	Groundwate	Soil Moistur	Samples	Tes	Instrument/ Backfill
+21.50	0.20	(TOP SOIL)	SILT, trace soft"; moist (TOPSOIL)	clay, organics; ; low plasticity;	dark br organio	own. "Ven cs, rootlets	y soft to 5.									ES0.1 NOV	No. 1 1, 0, 1, 1, 1, 2, 1, 2, 4, 3, 3, 5, 7, 5, 3, 3, 2, 2, 1, 2	
	-	(FILL)	SILT, minou gravel; grey Firm to stiff organics, fi subangular	to some clay, with orange ar ; moist; low pla prous; gravel, fi . (FILL)	trace sa nd yello asticity; ine to m	and, organ wish-brow sand, fine nedium, su	iics and n mottling to mediur ibrounded	$\begin{array}{c c} x & x \\ x & x \\ x & x \\ n; \\ to \\ x & x \\ x \\ x \\ x \\ x \\ x \\ x \\ x \\ x$										
+21.15	- 0.55		0.45m Grad	les to gravelly;	wet to s	saturated										ES0.5		
	-		Gravel grad	es medium to o	coarse.					i i i i			i i I I	Í		NOV		
	-										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	- 1												1.00r	n → 			No. 2 2, 7, 3, 4, 7, 4, 3, 2, 3, 4	
	-																V	
	-																	
Exp	lanation	IS:	meter -	• •	all Dist	urbed Som	nle	GROUN	IDWATEF	2			Rema	rks				
	Explanations: Scala Penetrometer - Small Disturbed Sample GROUNDWATER Image: Disturbed Sample Large Disturbed Sample Not Encountered Image: Disturbed Sample U100 Undisturbed Sample Slow Seep (depth) Schmidt Hammer Image: Disturbed Sample Slow Seep (depth) Image: Note Strength (kPa) Image: Disturbed Sample Slow Seep (depth) V=Peak, R=Residual, Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample V100 Undisturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Disturbed Sample Image: Distreside Sample												1. Coordi and subj 2. Streng Scala tes	inates ect to s th term st resul	and surve ns fo lts ar	elevatio ey confir or cohes nd indic	ns based on ha mation. ive soil layers a ated in quotatic	and hand GPS are based on on marks.
All o	rated dimensi	ons	in metres	Contracto	or:				Rig/l	 Plant Used	 d:						Logged by:	Checked by:

2	RI CONS Engineers	ULT/ and Ge	EY 2 ANTS T Fologists F	Riley Consul 2 Moorhouse Ave hristchurch el: +643 3794402 ax: +643 379440	ants										HA	ND	Δ	UC	SER	LOG	
Projec	t: nerset	Rar	ngiora Du	e Diliaence		Locatio	n: end Rd/	South	Belt	Ranc	liora		۲ ۱	lole po Refer t	sition: o Site	Plan				No.:	
Job N	0.: 17()743	. <u></u>	Start Date:	21- - 21-	12-18 12-18	Groun	d Leve	l (m	LINZ)): C	o-Ordi	nates	(NZT)	M2000):	01 A		ŀ	HA22	
Client	:		·		5. 21-	12-10		Hole D	Depth	ו:		E	1,500,	055.5	N 3,4	203,32	. 1.4		Sheet:		
We Le co			elopments	Ltd				1.10	m								- 0			1 of 1	
(m LINZ (m LINZ	Depth (m	Geological U	(refer Inf	Geologica to separate Ge ormation sheet	Desc otechnic for furth	ription cal and Ge ter informa	ological tion)	Leaend	S	oil She (<u>50 10</u>	ear St kPa)	rength	Sc (3	ala Pen blows / 6	etromet 50 mm) <u>9 12</u>	er 2 15	Soil Moistur	Samples	-	Tests	Instrument/ Backfill
+19 20	0.30	(TOPSOIL)	SILT, tract to firm"; m fine to me 0.25m Gra	e clay, organics oist, low plasti dium, subround dium, subround	and gra city; org ded, gre yellowis	avel; dark b anics, rootl ywacke (To sh-brown n	orown. "So lets; grave OPSOIL) nottling.	off $\underline{\vee}$ \vee										ES0.1 NOV	No. 1 1, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1		
+19.10	0.40		Gravelly S with orang moist; low to mediun MEMBER	ILT, minor to so and yellowis plasticity; san subrounded FORMATION). ft to very soft"	ome sar h-brown d, fine to o round	nd, trace gr mottling. ' medium; ed (YALDH	avel; grey 'Firm"; gravel, fin IURST	e x													
-		TON FORMATION)	SILT, mind soft"; mois amorphou SPRINGS 0.60m Gra	or clay, trace or st; low plasticity s, weak odour. TON FORMAT ades to firm.	ganics; /; organi (YALDł ON)	dark grey. cs, fibrous HURST ME	"Soft to ve to EMBER,	J ⊧ry	۵	× 							Ľ	ES0.5 NOV	////	∨ ^{V= 38} R= 10	
-		(YALDHURST MEMBER, SPRINGS	0.75m 50r	nm lenses of d	ark brov	vn fibrous I	PEAT.														
+18.40	- 1 1.10		1.00m Gra trace to m	ides to include inor fine gravel	minor to	o some sar	nd, and									00m			No. 2 3, 9, 7, 6, 7, 8, 9, 10,		
-			ЕОН @ 1.	10 m												<u></u>					
																50m 			♥		
Expla Solution Solution	anatior cala Pe lows/50 ermeab chmidt l situ Var =Peak, TPisture	netro mm ility T Hamr ne Sh R=Re able to	meter - est ner ear Strengtl esidual, o penetrate	● Si □ La ■ U n (kPa) ♥ W ▼ R	nall Dis Irge Dis I00 Und ater Str ater Ris se Time	turbed San turbed San isturbed S ike (1st, 2n e (1st, 2nd e (minutes)	nple nple ample id) I) and	GROU X N SI X Ra HOLE	Jot Ei ow S apid TER	VATEF ncount Seep (Inflow MINAT epth	tered depth (dept (D D) h 0.6 m UE TO fusal	1) : Coll	lapse	Rem 1. Coc and su 2. Stre shear cohesi Scala	narks Ibject to Ingth ter vane tes ve soil s test res	s and surv ms fo st wh streno ults a	elevatic ey confi or cohes ere avai gth term nd indic	ons based or rmation. sive soil laye lable. Where s are based ated in quot	n hand hand (rs are based e no shear var on correlation ation marks.	GPS on ne, n with
D = d satura All di	ry; M = 1 ated mensi	ons	in metres	S =	or:		[L			Rig/	Plant	Used:								y: Check	ed by:

2	RI CONS Engineers	ULT/ and Ge	EY 22 NTS T	Riley Con 2 Moorhouse christchurch el: +643 379 ax: +643 379	sultant ^{Ave} 4402	s	_	_	_	_	_			_	F	IAI	١D	A	UC	SER	LO	G	_
Proje	ct:	Per		o Diligor	~	Loc	ation:	4/6~	th D-		nai			Hole	e posi	ition:	Dian				No.:		
Job N	lo.:	Rar		Start Da	ate: 2	21-12-18	Grou	nd Le	vel (m LIN	angion IZ):	a Co-Orc	linate	es (N	ZTM2	2000):					HA2	3	
Clien	170 t:	0743	•	Finish L	Date: 2	21-12-18	3	2 Hole	0.50 e Dei	pth:		E	1,56	6,746	5.4	N 5,20	03,30	0.2		Sheet:			
W	elhom	Deve	elopment	s Ltd				0.8	30 m												1 of 7	1	
5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	Depth (m)	Geological Uni	(refer Inf	Geolog to separate formation sh	ical De Geotec neet for f	scriptior hnical and urther info) Geological rmation)		Legend	Soil S	Shear (kPa	Strengtl a) 150 200	h	Scala (blov 3	Peneti ws / 50	romete) mm)) 12	r Groundwater 12	Soil Moisture	Samples		Tests		Instrument/ Backfill
	-	(TOPSOIL)	SILT, trac moist; low	e clay, orga / plasticity; /	nics; dar organics	k brown. ' , rootlets.	'Very soft"; (TOPSOIL)	2 1/ 1/	<u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u> <u>\</u>										ES0.1	No. 1 0, 0, 1 0, 1, 2 1, 1, 2 1, 1, 1 1, 1, 1 1, 3, 4 5, 4	5 5 5 5		
+20.25	- 0.25		0.20m Gr	ades to 'sof	to very	soft'.		2		İ	Ì	i i i i	K	i I	i i I I	İ	İ						
	-	(GSTON FORMATION)	SILT, min gravel; gra "Soft to fir organics, (YALDHU	or to some ey with oran m; moist; lo fibrous; gra RST MEME	clay, trac ge and y w plastivel, subr ER, SPF	e sand, o vellowish-t city; sand, ounded to RINGSTOI	rganics and prown mottlin fine to medi subangular. N FORMATIO	ng. × ium; × ON) ×															
	-	(YALDHURST MEMBER, SPRIN	0.60m Gra	ades to clay	ey. Very	stiff.					 		•						ES0.5 NOV		∨V= R=	112 36	
+19.70	0.80		0.75m Mi	nor orange	mottling.			*	`×														
	- 1 		EOH @ U	80 m												1.00 1.00 1.10 1.15 1.15 1.15 1.15 1.15				No. 2 12, 14 14			
Expl	anation	ns:	meter -	•	Small	Disturbed	Sample	GRO	OUNI	DWAT	rer					Rema	arks		ole:: "	mo k '	n h !'	and Of	
▼ E ▼ F ∨ S II D = c	Permeab Schmidt Schmidt /=Peak, Moisture dry; M = rated	mm ility T Hamr ne Sh R=Re able to moist	est ner tear Strengt esidual, o penetrate ;; W = wet; ;	h (kPa) ↓ S =	Large I U100 U Water Water Rise T	Disturbed Jndisturbe Strike (1s Rise (1st, ime (minu	Sample d Sample t, 2nd) 2nd) and tes)		Not Slow Rapi LE TE arge	Enco v Seep id Inflo ERMIN t deptl	o (dep o (dep ow (de NATEC hXI	d th) pth) DUE TC Refusal	D:	Collaps	se	. Coord and sub 2. Stren shear va sohesive Scala te	anates ject to gth terr ane tes e soil s e soil s est resu	and surve ms fo t whe treng ilts ar	elevationer ey confi for cohest ere avai th term and indic	ons based o rmation. sive soil laye lable. Wher is are based cated in quo	n hand h ers are ba e no she l on corre tation ma	and GF ased or ar vane elation v arks.	າຮ , with
All d	imensi Sca	ons le 1 [.]	in metres 10	Contr	actor:					R	ig/Pla and A	nt Used uger	:							Logged I RBW	oy: Ch	ecked CFC	l by: C

2	RI CONS Engineers	ULT/ and Ge		Riley Consul 22 Moorhouse Ave Christchurch Tel: +643 3794402 Fax: +643 3794402	ltants							HAN	D	AU	G	ER LO	OG	_
Proj	ect: nmersel	Rar	ndiora Du	e Diligence		Locatio	n: end Rd	/South I	Belt Randi	ora	Hole p	osition: to Site Pla	n			N	lo.:	
Job	No.: 17()743	. <u></u>	Start Date	: 18- te: 18-	12-18 12-18	Grour	nd Level	(m LINZ):	Co-Ordir	nates (NZT	M2000):	464	.7		HA-	BH1	
Clie	nt: Velhom	Dev		e td				Hole D	epth:		,000,021.0	110,200	, 101			Sheet:	of 1	
		CPit											ter	er	 ທູ			
(m LIN +23.7	Depth (r	Geological	(refer In	Geologica to separate Ge formation shee	al Desci eotechnic t for furth	ription cal and Gener informa	ological tion)	Legenc	Soil She (ł	ar Strength Pa)	Scala Per (blows)	netrometer / 50 mm) <u>9 12 -</u>	Groundwa	Soil Moistu	Sample	Tes	ts	Instrument Backfill
+23.5	0 0.20	(TOP SOIL)	SILT, trac moist; lov	e clay, organic v plasticity; org	s; dark b anics, ro	rown. "Firm otlets. (TOI	n to stiff"; PSOIL)							ES(NO'	0.1 V			
	-	(YALDHURST MEMBER, SPRINGSTON FORMATION)	SILT, min and yellov plasticity; MEMBEF	or to some clai wish-brown mo sand, fine to r R, SPRINGSTO	y, trace s titling. Ve nedium. (N FORM	iand; grey \ vry stiff; mo (YALDHUR ATION)	with orang ist; low ST	99 						ESS).5 V			
+22.9	- <u>0.75</u> - 1		EOH @ 0	.75 m				^-× ×						ES(NO	0.7 V			
	-																	-
Ex	olanatio	าร:						GROU	NDWATER			Remark	(S	<u> </u>		l		<u> </u>
	Scala Pe blows/50 Permeab Schmidt Insitu Va V=Peak, IMOISIUE dry; M = urated dimensi	netro mm ility T Hamr ne Sh R=Re able to moist moist	meter - est ner lear Strengt esidual, o penetrate ;; W = wet; in metres	$(kPa) = \frac{V}{2} R$	mall Dist arge Dist 100 Und Vater Stri Vater Ris Rise Time tor:	turbed San turbed San isturbed Sa ike (1st, 2n e (1st, 2nd e (minutes)	nple nple ample id) I) and	X N Slo Ra HOLE Tarç	ot Encounte ow Seep (d pid Inflow TERMINAT get depth	ered epth) (depth) ED DUE TO: Refusal Plant Used:	: Collapse	1. Coordin and subjec 2. Hole loc environme 3. No stren testing at n	ates a ct to s cated s ntal s ngth te nearby	and elev urvey co adjacen ampling esting; s y HA loc	vation onfirm t to B g. streng cation	s based on ha nation. BH1, undertake gth terms base is.	nd hand Gf en for d on streng Checkee	s th d by:

2	RI CONS Engineers	ULT/ and Ge	EY ANTS cologists	Riley Consult 2 Moorhouse Ave hristchurch el: +643 3794402 ax: +643 3794403	ants							HAN	D	AU	GEF	R LO	DG	
Proje	ct:	Por	naiora Du	Diligenco		Locatio	n: and Pd	South D	olt Panaia	ra	Hole po	osition:	n			N	o.:	
Job N	lo.: 17()743	3	Start Date: Finish Date	18- : 18-	12-18 12-18	Grour	nd Level	(m LINZ):	Co-Ordin	ates (NZT	M2000): N 5.203	.517.	.3		HA-	BH2	
Clien We	t: elhom	Deve	elopments	s Ltd				Hole De 0.90 n	epth:		<u> </u>				She	et: 1 (of 1	
Elevation (m LINZ)	Depth (m)	Geological Unit	(refer Inf	Geological to separate Geo ormation sheet	Descl otechnic for furth	r iption cal and Ge er informa	ological tion)	Legend	Soil Shea (kl	r Strength Pa)	Scala Per (blows /	netrometer 50 mm)	л Groundwater	Soil Moisture	Samples	Tes	ts	Instrument/ Backfill
+24.40	- 0.20		SILT, trac moist; low SILT, min and yellov plasticity;	e clay, organics; plasticity; orga pr to some clay, vish-brown mott	; dark b nics, ro trace s ling. Ve	rown. "Firr otlets. (TO and; grey ' ry stiff; mo YALDHUF	n to stiff"; PSOIL) with orang bist; low	<u> 10 </u>						ES0 NOV	1///			
	-	ST MEMBER, SPRINGSTON FORMATION)	MEMBER	SPRINGSTON	FORM	ATION)		<pre>x x x x x x x x x x x x x x x x x x x</pre>						ES0 NOV	.5			
+23.50	- - 0.90	(УАГДНИК	0.70m Gra 0.80m Gra subrounde	ades to grey and ades to include r ad.	d orange minor g	e mottling. ravel, fine	to mediur							ES0 NO\	.8			
	- 1 - - -		EOH @ 0	90 m														
Expl Expl F Soil D = c	anation Scala Pe blows/50 Permeab Schmidt nsitu Va /=Peak, Moisture dry; M = ated	netro mm ility T Ham ne Sh R=Re able t	meter - rest mer sidual, o penetrate t; W = wet; :	● Sr □ La ■ U1 n (kPa) ↓ Wa ↓ Wa ↓ Wa ↓ Wa ↓ Wa ↓ Wa ↓ Wa ↓ Sa	nall Disi rge Disi 00 Und ater Stri ater Ris se Time	turbed San turbed San isturbed S ike (1st, 2r e (1st, 2nc (minutes)	nple nple ample nd) t) and	GROUN X No Slo Rap HOLE T Targe	DWATER t Encounter w Seep (de pid Inflow (d ERMINATE et depth X	red epth) D DUE TO: Refusal	Collapse	Remark 1. Coordina and subjec 2. Hole loc environmer 3. No strem testing at n	S ates and t to su ated a ntal sa ight tes nearby	nd eleva irvey co idjacent impling sting; s HA loc	ations bas nfirmatior to BH1, to trength ter ations.	eed on ha n. Indertake ms base	nd hand GP n for d on strengt	 S
All d	limensi	ons	in metres	Contracto	or:				Rig/Pl	ant Used: Auger 70 m	m				Logg	ed by:	Checked	by

2	RI CONS Engineers	ULT/ and Ge	EY ANTS Pologists	Ciley Consul 2 Moorhouse Ave hristchurch el: +643 3794402	tants									ŀ	AN	١D	A	UC	SER L	OG	
Proje	ct:	Dor		Diligonoo		Locatio	n:	/South		t Dong	ioro		Hol	e pos	ition:	lon				No.:	
Job N	lo.: 17	0743		Start Date: Finish Date	20- e: 20-	12-18 12-18 12-18	Grour	nd Lev 24	r De rel (n	n LINZ):		o-Ordii E 1	nates (N	JZTM 57.4	2000): N 5.20	3.588	3.3		HA	-BH3	6
Clien W	t: elhom	Dev	elopments	Ltd				Hole 1.05	Dep 5 m	th:			,,.	-	-, -				Sheet: 1	of 1	
Elevation (m LINZ)	Depth (m)	Geological Unit	(refer Infe	Geologica to separate Ge prmation sheet	Desci otechnic for furth	r iption cal and Ge er informa	ological tion)	-	Legend	Soil She (I	ear Str kPa)	ength	Scala (blo	a Penel bws / 5	trometer 0 mm) 9 12	51 Groundwater	Soil Moisture	Samples	Te	ests	Instrument/ Backfill
+24.20	- 0.20	(TOP SOIL)	SILT, trace soft"; mois (TOPSOIL	e clay, organics t; low plasticity)	; dark b /; organi	rown. "Soft	t to very s.		<u>''</u> <u>\\ /</u> <u>\\ /</u> <u>\\ /</u> <u>\\ /</u> <u>\</u> X		<u> 0 30</u> 				9 12 			ES0.1 NOV	No. 1 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 5, 7		
	-	RMATION)	ol.35m Gra	ish-brown mod sand, fine to m SPRINGSTOF	, trace s tling. Ve edium. (N FORM stiff'.	ATION)	ist; Iow ST	ye × × × × × ×	× × × × × × ×												
	-	(YALDHURST MEMBER, SPRINGSTON FO	0.60m Gra Very stiff.	des to light gre	ey with n	ninor oranç	ge mottlin	rg. × × × × × × × × ×	× × × × × × × × × ×									ES0.5 NOV		✓ V= 163 ✓ R= 36	
+23.35	- 1 - -		ЕОН @ 1.	05 m				××	×××						1.007 1.007 1.007 1.0	- ▶ n		ES1.0 NOV	No. 2 8, 11, 13, 11		
Expl Expl	- anatio Scala Pe blows/50 Permeat Schmidt nsitu Va /=Peak,	ns: metro mm Hamr ne Sh R=Re able t	meter - est ner eear Strength esidual, o penetrate	● Si □ La U u (kPa) ↓ W ↓ W ↓ R	nall Dis arge Dist 100 Und ater Stri ater Ris se Time	turbed San urbed San isturbed Sa isturbed Sa ke (1st, 2nd (minutes)	nple nple ample id) t) and		UND Not I Slow Rapic	WATER Encounte Seep (c	ered depth (depth)) JE TO			Rema 1. Coord and subj 2. Streng shear var cohesive Scala tes 3. Locate sampling	rks inates ect to s th term ne test soil st resul ad adja	and of surve ms fo whe treng its ar cent	elevatic evy confi r cohese re avai th term nd indic to BH3	ons based on h mation. sive soil layers lable. Where r s are based or vated in quotat s, undertaken f	nand hand (are based no shear van n correlation ion marks. or environm	GPS on ne, n with nental
D = 0 satu All d	dry; M = rated limens	moist	; W = wet; S	S = Contract	or:		[X Ta	arget	Rig/F	Ref	Jsed:		ose					Logged by	Check	ed by:

2	RI CONS Engineers	ULT/ and Ge	EY ANTS Fologists	Riley Consults 2 Moorhouse Av hristchurch el: +643 37944 ax: +643 37944	lltants e 02 03							HAN	D	AUC	GER L	OG
Proje	ct: merse	Rar	ndiora Du	e Diligence		Locatio	n: end Rd	/South F	Belt Rangic	ra	Hole po	osition: to Site Play	n		N	lo.:
Job N	lo.: 17)74.3		Start Date	e: 20- te: 20-	12-18 12-18	Grour	nd Level	(m LINZ):	Co-Ordin	ates (NZT	M2000):	611	3	HA	-BH4
Clien	it:					12 10		Hole De	epth:		,500,000.5	N 3,203,	011.	5	Sheet:	-5.4
W F		Deve	elopments					0.95 r	n 				-			of 1
multiple (m LINZ	Depth (m	Geological U	(refer Inf	Geologica to separate G ormation shee	al Desci eotechnic et for furth	r iption cal and Ge ner informa	ological tion)	Legend	Soil Shea (kl	r Strength Pa) 150 200	Scala Per (blows / 3 6	netrometer 50 mm) 9 12 1	مه Groundwate	Soil Moistur Samples	- Tes	Instrument/ Backfill
+21.00	- 0.20	(TOP SOIL)	SILT, trac moist; low	e clay, organio plasticity; org	cs; dark b ganics, ro	rown. "Firm otlets. (TO	n to stiff"; PSOIL)							ES0.1 NOV	////	
	-	(YALDHURST MEMBER, SPRINGSTON FORMATION)	SILT, min and yellov plasticity; MEMBER	or to some cla vish-brown m sand, fine to r , SPRINGSTO	ny, trace s bttling. Ve nedium. I NN FORM	iand; grey i ry stiff; mc (YALDHUR ATION)	with orang ist; low ST	y x						ES0.5 NOV	7777	
+20.25	- 0.95 - 1 		0.90m Gri greywack EOH @ 0	ades to includ e. 95 m	e some g	ravel, subr	ounded,							ES0.9 NOV		
Exp V Soil D =	 Scala Pe blows/50 Permeat Schmidt nsitu Va √=Peak, Moistuff dry; M = rated	netro mm ility T Hamr ne Sh R=Re able to moist	meter - est ner lear Strengt esidual, o penetrate ;; W = wet; ;	• (kPa) • (kPa	Small Dis Large Dis J100 Und Water Str Water Ris Rise Time	turbed San turbed San isturbed S ike (1st, 2n e (1st, 2nd e (minutes)	nple nple ample id) I) and	GROUN	IDWATER NDWATER ot Encounter w Seep (de pid Inflow (d ERMINATE et depth X	red pth) lepth) D UE TO: Refusal	Collapse	Remark: 1. Coordina and subject 2. Hole locz environmer 3. No streny testing at n	S ates art t to sur ated ac ntal sar gth tes earby	d elevati rvey conf djacent to mpling. ting; stre HA locat	ons based on ha irmation. o BH1, undertak ength terms base ions.	and hand GPS en for ed on strength
	limens Sca	ons le 1 [.]	in metres 10	Contrac	ctor:				Rig/Pl Hand	ant Used: Auger 70 m	m				Logged by: AvD	Checked by:

Project: Summ Job No Client: Well +22.40 +22.40 - +22.40 - - +22.40 - - -	erset	Ran										ΠΑΝ	וט	AU	GER L	UG
Job No Client: Well +22.40 +22.40 - +22.40 - - +22.40 - - - - - - - -	0.: 17(nai	aioro Du	Diligonoo		Location	n: ond Pd/	South B	olt Pangio	ro	Hole po	osition:	n			No.:
Client: Well +22.40 +22.40 - +22.20 - +22.20 - - - -	- 170	740		Start Date:	: 21-1	12-18	Groun	d Level	(m LINZ):	Co-Ordin	ates (NZT	M2000):			HA	-BH5
Well		1143		Finish Date	e: 21-1	12-18		22.40 Hole De) epth:	E1	,566,694.2	N 5,203	,361.	3	Sheet:	
+22.20 +22.20 +22.40 - +22.20 - - -	hom	Deve	elopments	Ltd				0.60 n	<u>ו</u>						1	of 1
+22.20	Depth (m)	Geological Uni	(refer Inf	Geological to separate Geo prmation sheet	l Descr eotechnic for furthe	iption al and Gec er informat	ological tion)	Legend	Soil Shea (kl	r Strength Pa)	Scala Per (blows /	netrometer 50 mm) 9 12 1	u Groundwater	Soil Moisture	Te	Instrument/ Backfill
+21.80	0.20	(TOP SOIL)	SILT, trace moist; low	e clay, organics plasticity; orga	s; dark br anics, roc	rown. "Firm otlets. (TOF	n to stiff"; PSOIL)							ES0. NOV		
+21.80		YALDHURST MEMBER, SPRINGSTON FORMATION)	SILT, mind and yellow plasticity; MEMBER	or to some clay, rish-brown mot sand, fine to mu SPRINGSTON	v, trace sa ttling. Ver edium. (` N FORM/	and; grey w ry stiff; moi YALDHUR: ATION)	vith orang ist; low ST	e × × × × × × × × × × × × × × × × × × ×						ES0.		
-	1		ЕОН @ 0.	60 m												
Explar Sci blo Pei Sci Ins V= Sci D = dry saturat	natior ala Pe bws/50 rmeab hmidt l situ Var Peak, <u>Pisture</u> y; M = F	netror mm ility To Hamn ne Sh R=Re able to moist	meter - est ner ear Strength esidual, o penetrate ;; W = wet; S	● Sn □ La ■ U1 n (kPa) ♥ W ↓ W ↓ Ri: S =	mall Distu arge Distu 100 Undi / ater Strik / ater Rise ise Time	urbed Sam urbed Sam isturbed Sa ke (1st, 2nd e (1st, 2nd (minutes)	iple iple ample d)) and	GROUN X Nc Slo Rap HOLE T Targe	IDWATER t Encounter w Seep (de bid Inflow (d ERMINATE et depth X	ed pth) lepth) D DUE TO: Refusal	Collapse	Remark 1. Coordina and subjec 2. Hole loc: environmer 3. No stren testing at n	S ates ar t to su ated a ntal sa gth tes earby	nd eleva rvey cor djacent mpling. sting; st HA loca	tions based on h firmation. to BH1, undertal rength terms bas tions.	and hand GPS ten for ed on strength

2	RI CONS Engineers	ULTA and Ge	R 22 Ch Te ologists	Moorhouse A ristchurch I: +643 3794 x: +643 3794	Ave 402 4403										┣	IA	ND) /	٩U	GE	ER LO	OG	
Proje	ect:	Der				Locatio	n:				air			Hole	posi	tion:					Ν	lo.:	
Job I		. rar	igiora Due	Start Da	e te: 18-	12-18	Groui	nd Le	evel (m LINZ		1 Co-Or	dinat	tes (N		2000)	rian.			_	HA	-BH6	i
Clier	170 nt:	J743		Finish D	ate: 18-	12-18		2 Hol	23.70 e De	pth:		E	E 1,5	66,308	3.8	N 5,2	03,42	25.4		s	Sheet:		
W	/elhom	Deve	elopments	Ltd				1.	10 m	i											1	of 1	
tevation (m LINZ)	Depth (m)	Geological Unit	(refer t Info	Geologi o separate rmation sh	cal Desci Geotechnic eet for furth	r iption cal and Geo ler informat	ological tion)		Legend	Soil St	near : (kPa 100 1	Streng a) 50 200	th	Scala (blow	Peneti vs / 50	romete) mm)) 12	er	Groundwater		samples	Tes	sts	Instrument/ Backfill
+23.50	0.20	(TOP SOIL)	SILT, trace dry to mois (TOPSOIL)	clay, orgar t; low plast	nics; dark b iicity; organ	rown. "Firm ics, rootlets	n to stiff"; s.	,											ES0. NOV	1///			
	-		SILT, mino and yellowi plasticity; s MEMBER,	r to some o ish-brown r and, fine to SPRINGST	clay, trace s mottling. Ve o medium. (TON FORM	and; grey v ry stiff; mo YALDHUR ATION)	vith oran ist; low ST	ge	× × × × × × × ×														
essona	-	(YALDHURST MEMBER, SPRINGSTON FORMATION)	0.60m Grav subrounder	des to inclu d, greywacl	ide trace gr ke.	avel, fine to	o mediun	n, :	* * * * * * * * * * * * * * * * * * * *										ES0. NOV	.5			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1		1.00m Red	uced orang	ge mottling.			:	^ × × × × × × × × ×														
	-		EOH @ 1.1	10 m																			
וומיד וומילי סטראועטרא אדר דררכיני	-																						-
Exp	lanatio	ns:	moto-		Small D:	hurbed 0-	anle	GR	OUN	DWATE	ĒR					Rem	arks						
	ocaia Pe blows/50 Permeet	netro mm ility T	meter - est		Large Dist	urbed Sam urbed Sam isturbed Sa	ipie iple ample			t Encoui	ntereo	d th N				. Coor and sul 2. Hole	dinate oject to locate	s and surv d ad	d eleva vey co jacent	ations I nfirmat to BH	based on ha tion. 1, undertako	and hand G en for	SPS
▼ ↓ > 3.6LB 1	Schmidt Insitu Va	Hamr ne Sh	ner ear Strength	(kPa)	Water Stri	ike (1st, 2n	d)] Rap	id Inflov	v (depi	pth)			6	environ 3. No s	mental trength	l san i test rbv F	npling. ing; st	rength	terms base	ed on stren	gth
Soil	V=Peak, <u>WTP=</u> Un	R=Re able to	esidual, o penetrate	Į Ţ	Water Ris Rise Time	e (1st, 2nd (minutes)) and	но	- LE TI	ERMINA		DUE T	0:	o		ssung	acned	. Буг		200115.			
	dry; M =	moist	; W = wet; S	=	actor:				l'arge	t depth			(Collaps	se						aged by	Chooks	
	umens Sca	ons le 1:	10 metres	Contra			Har	nd Au	uger 70	а.) mm	1							RBW	Crecke	C			

APPENDIX E Results Table

TABLE 1: CONTAMINANT CONCENTRATIONS IN SOILS (mg/kg)

104 Townsend Road & 141 South Belt, Rangiora

	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					HA3	HA3	HA4	HA4	HA10	HA10	HA9	HA9	HA9	HA2	HA2	
Job Number	Glev Earth	Burwood Resource	Residential (10%	High-Density	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	1101 05%
Date	Giey Laith	criteria	produce)	Residential	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	UCL 9578
Depth (m)					0.1 Soil	0.5 Soil	0.1	0.5 Soil	0.1 Soil	0.5 Soil	0.1 Soil	0.5 Soil	0.9 Soil	0.1 Soil	0.5 Soil	
			I		3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	
Heavy Metals		•				-										
Arsenic	11	80	20	45	6.36	5.97	7.43	5.64	7.54	29.5	6.31	8.99	6.18	7.71	4.64	
Cadmium	0.28	2 700	3	230	0.086	20.3	0.053	0.006 20 9	0.11	0.057 23.6	0.11	0.023 20.6	0.021 21	0.13	0.029 25.4	
	16.4	>10.000	>10.000	>10.000	8.06	5.59	6.82	10.7	8.01	10.3	9.65	6.6	12.1	17	11.3	
Lead	19.3	880	210	500	23.1	23.4	22.7	25.1	23.4	42.1	24.6	26.6	23.8	166	31.1	
Nickel	16.1	1,200	-	-	11.3	12.5	10.6	13.5	11.3	19.2	12.4	12.8	14.1	11	15.9	
Zinc	77.1	30,000	-	-	81.7	75.3	68.5	63.2	86.4	113	92.5	80.9	63.5	167	80.9	
Qualitative Asbestos																
Asbestos					ND				ND							
Polycyclic Aromatic Hydrocarbons																
Acenaphthene					<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthylene					<0.01	<0.01	<0.01	<0.01	< 0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Anthracene					<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dibenz(a,h)anthracene					<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Fluoranthene					<0.02	< 0.02	< 0.02	< 0.02	0.03	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	
Fluorene					<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene					<0.01	<0.01	<0.01	<0.01	<0.024	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Naphthalene					<0.01	<0.01	< 0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	
Prenanthrene					<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzfalanthracene					<0.02	<0.02	<0.02	<0.02	< 0.03	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene (BAP)					0.01	<0.01	0.01	<0.01	0.03	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo[b]&[j] fluoranthene					<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[g,h,i]perylene					<0.02	<0.02	<0.02	<0.02	<0.024	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[k]fluoranthene	0.922	40		24	<0.01	<0.01	<0.01	<0.01	<0.024	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	
Organochlorine Pesticides	0.322	40		24	0.03	0.03	0.03	0.05	0.07	0.04	0.05	0.03	0.05	0.05	0.05	L
Total DDT		I		240	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
alpha-BHC				210	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	
Aldrin					< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	
beta-BHC					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
cis-Chlordane					<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	
delta-BHC					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dieldrin				45	< 0.05	<0.005	<0.005	<0.005	<0.005	< 0.05	<0.05	<0.005	< 0.005	<0.005	<0.005	
Endosulfan I					< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	
Endosulfan II					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Endosulfan sulphate					< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	
Endrin Fadria aldahuda					< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
Endrin aldenyde					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <0.005	<0.01	<0.01	<0.01 <0.005	<0.01	<0.01	
gamma-BHC					<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	
Heptachlor					<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	
Heptachlor epoxide				-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Hexachlorobenzene					< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Methoxychlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
trans-Chlordane					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chlordane (sum)					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
TCMX (Surrogate) %					92.9	87.8	85.4	85.9	82.4	80.9	81.5	88.4	90.4	82.5	93.6	

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These concentrations are proposed in the 2007 Ecan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded

NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

 55 - Bold where result exceeds background levels

 55 - Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.

 55 - Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.

 Benzo[a]pyrene (BAP) Toxic Equivalence Quotient (TEQ) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, 1

 1 Background Concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils Report No. R07/19, July 2007, compared to the mean concentration CCC.

	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					H-BH2	H-BH2	H-BH2	H-BH1	H-BH1	H-BH1	HA8	HA8	HA1	HA1	HA1	
Job Number		Burwood Resource			170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	
Date	Gley Earth	Recovery Park acceptance	Residential (10%	High-Density	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	UCL 95%
Depth (m)		criteria	produce)	Residential	0.1	0.5	0.8	0.1	0.5	0.7	0.1	0.5	0.1	0.5	0.9	
Geology					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Heavy Metals (mg/kg dry wt)		11	I		0011	00	0011	0011		0011	0011	0011	0011	00	00	
	11	80	20	45	8 5 1	4.63	3 5 8	5 29	3.08	4.67	6.46	3.06	5 1/	79	3 80	
Cadmium	0.28	400	3	230	0.059	0.019	0.01	0.069	0.014	0.008	0.40	0.013	0.074	0.069	0.046	
Chromium	19.3	2 700	460	1 500	19.3	21.5	20.2	18	23.2	17.3	18	22.4	15.1	22.7	25.9	
Copper	16.4	>10.000	>10.000	>10.000	7 14	12	9.75	7 18	8 96	7.44	10	89	6.42	7 37	17.9	
Lead	19.3	880	210	500	25.4	29	22	22.7	28.8	19.7	32.6	25.7	20.8	34.9	40.2	
Nickel	16.1	1,200	-	-	12.5	13.8	11.7	13.6	12.6	9.05	13.9	10.4	10	14.9	18.1	
Zinc	77.1	30.000	-	-	90.1	66.5	49	86.8	62.1	40.7	119	46.7	69	96.7	96.6	
	//.1	30,000	I		5012	00.5	-15	0010	02.1	10.7		10.7	05	5017	5010	
Ashostos								1	1	1	ND	1	ND			
Asbestos		<u> </u>	I		1			I	I	1	ND		ND			
Acenanhthene			-		<0.01	<0.01	<u><</u> 0.01	<0.01	<0.01	~0.01	<0.01	<0.01	<0.01	<0 01	<0 01	
Acenaphthene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Anthracene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Dibenz(a h)anthracene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.03	<0.01	<0.01	<0.01	<0.01	
Eluoranthene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Fluorene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.02	<0.02	<0.02	<0.02	
Indeno(1,2,3-cd)pyrene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	
Naphthalene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenanthrene					<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Pyrene					<0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	0.05	<0.02	<0.02	<0.02	<0.02	
Benz[a]anthracene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene (BAP)					< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	0.04	<0.01	<0.01	<0.01	<0.01	
Benzo[b]&[j] fluoranthene					< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	0.05	<0.02	<0.02	<0.02	<0.02	
Benzo[g,h,i]perylene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[k]fluoranthene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Benzo[a]pyrene TEQ (LOR)	0.922	40		24	0.03	0.03	0.03	0.03	0.03	0.03	0.07	0.03	0.03	0.03	0.03	
Organochlorine Pesticides		·								•			•			
Total DDT				240	< 0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	
alpha-BHC					< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	
Aldrin					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	
beta-BHC					< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	
cis-Chlordane					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	
cis-Nonachlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
delta-BHC					< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	
Dieldrin				45	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Endosulfan I					<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Endosulfan II					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Endosulfan sulphate					< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	
Endrin					<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Endrin aldehyde					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Endrin ketone			[<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
gamma-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	
Heptachlor			 		<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Heptachlor epoxide					<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	
Hexachlorobenzene			 		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	
Methoxychlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
trans-nonachior			 		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
trans-Chiordane					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
ICIVIA (Surrogate) %		1			82.1	92./	97.6	91.2	88.4	٥/.J	93	96./	85	/8./	80	

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These concentrations are proposed in the 2007 Ecan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

Sto - Bold where result exceeds background levels
 Underline numeral (and highlighted yellow) where result exceeds Burwood Resource Recovery Park acceptance criteria.
 Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.
Benzo[a]pyrene (BAP) Toxic Equivalence Quotient (TEQ) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene,	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					H-BH6	H-BH6	H-BH6	HA13	HA7	HA7	H-BH3	H-BH3	HA11	HA11	HA5	HA5
Job Number		Burwood Resource			170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743
Date	Glev Earth	Recovery Park acceptance	Residential (10%	High-Density	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Depth (m)		criteria	produce)	Residential	01	0.5	1	0.1	01	0.5	0.1	0.5	0.1	0.5	0.1	0.5
Geology					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Heavy Metals (mg/kg dry wt)			I		301	3011	3011	301	3011	3011	3011	3011	3011	3011	501	501
Arconic	11	<u>00</u>	20	45	7.54	4.45	4.06	7 2 2	7.25	4.2	E OG	6.07	0.62	11.2	E 21	0.25
Cadmium	0.29	00 400	20	45	7.54	4.45	4.00	7.52	7.25	4.2	0.024	0.07	9.05	0.025	0.12	9.25
Chromium	0.20	400	5	250	0.000	0.007	0.024	0.00	0.078	0.014	0.024	0.12	0.076	0.025	0.12	0.052
Corpor	19.3	2,700	400	1,500	19.7	19.8 6.27	7.42	19.5	20	10.0	19.4	25.0	19.0	22.2	10.2	14.2
Copper	10.4	>10,000	>10,000	>10,000	9.95	0.57	7.45	10.5	20.0	4.79	8.57	33.5	0.55	9.04	10.5	14.5
Nickol	19.5	1 200	210	500	16.1	10.4	14.4	25.0 15.5	20.0	10.2	12.1	121	23.3	12 5	15.5	32.5
Zinc	77.1	1,200	-	-	10.1 93 E	10.4	15.2 E1.1	15.5	14.4 03 E	10.5 E 9 6	76.4	13.5	12.0 9E 4	15.5 93.6	102	10.2
	//.1	50,000	-	-	03.3	40.9	51.1	01.4	03.5	56.0	70.4	145	05.4	82.0	102	03.2
									1		ND				ND	
Asbestos					I			I	l		ND				ND	
Polycyclic Aromatic Hydrocarbons																
Acenaphthene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene					<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Fluoranthene					<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene					<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Naphthalene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Pyrene					<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
BenzlaJanthracene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene (BAP)					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Benzo[b]&[j] fluoranthene					<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Benzo[g,h,i]perylene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	0.000				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[a]pyrene TEQ (LOR)	0.922	40		24	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Organochlorine Pesticides		1														
Total DDT				240	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
alpha-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
beta-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
cis-Chlordane					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin				45	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldenyde					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone					<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
gamma-BHC					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor					<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Heptachlor epoxide					<0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Hexachlorobenzene					<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachior					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chiordane					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
I CIVIX (Surrogate) %					93.3	81.8	/9.3	80.7	116.6	98.2	111.3	115.2	98	99.1	103.6	95.9

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These concentrations are proposed in the 2007 Ecan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

55 - Bold where result exceeds background levels

 55 - Bold where result exceeds background levels

 55 - Underline numeral (and highlighted yellow) where result exceeds Burwood Resource Recovery Park acceptance criteria.

 55 - Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.

 Benzo[a]pyrene (BAP) Toxic Equivalence Quotient (TEQ) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, 1

 Background Concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils Report No. R07/19, July 2007, compared to the mean concentration CCC.

	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					HA6	HA6	H-BH4	H-BH4	HA12	HA12	FT1	FT1	HA14	HA14	HA18	
Job Number		Burwood Resource			170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	
Date	Gley Earth	Recovery Park acceptance	Residential (10%	High-Density	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	UCL 95%
Depth (m)		criteria	produce)	Residential	0.1	0.5	0.1	0.5	0.1	0.5	0.1	0.3	0.1	0.5	0.1	
Geology					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Heavy Metals (mg/kg dry wt)			· · · · · · · · · · · · · · · · · · ·													
	11	80	20	45	5.54	2.80	4.44	2.28	7.28	5 16	50	6.76	4.51	4.03	7.83	
Cadmium	0.29	400	20	220	0.10	2.83	0.12	0.017	0.001	0.020	0.26	0.061	4.51	4.03	7.85	
Chromium	10.20	2 700	3	1 500	10	0.027	10.12	20.2	20	20.02.9	0.50	20.001	10.000	27.2	0.000 22.1	
Connor	19.5	>10.000	400 >10.000	1,300	19	12.0	6 77	0.59	6.60	20.9	42.2	7.65	10.7	14.2	23.1	
Lood	10.4	>10,000	>10,000	>10,000	9.02	15.9	0.77	9.30	0.09	9.54	02.2	7.03	10.8	14.5	9.60	
Leau	19.5	1 200	210	500	27.1	16.1	12	24.7	10.7	11.0	14.4	37.2	21.2	29.9	20.0	
	10.1	1,200	-	-	14.1	10.1	15	72.0	12.7	11.9	14.4	15.4	14.4	11.0	10.0	
	//.1	30,000	-	-	92.9	90	/0.5	/3.8	/8.4	69.6	340	94.6	91.6	52.8	102	
Qualitative Aspestos						1			1			1				
Asbestos							ND		ND		ND	ND	ND			
Polycyclic Aromatic Hydrocarbons																
Acenaphthene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthylene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Anthracene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	0.06	<0.01	<0.01	<0.01	<0.01	
Dibenz(a,h)anthracene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Fluoranthene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.1	<0.02	<0.02	<0.02	<0.02	
Fluorene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	0.04	<0.01	<0.01	<0.01	<0.01	
Naphthalene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenanthrene					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	0.03	<0.01	<0.01	<0.01	0.01	
Pyrene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.09	<0.02	<0.02	<0.02	<0.02	
Benz[a]anthracene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene (BAP)					<0.01	<0.01	<0.01	<0.01	<0.011	<0.01	0.06	<0.01	<0.01	<0.01	<0.01	
Benzo[b]&[j] fluoranthene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	<0.02	<0.02	<0.02	<0.02	
Benzo[g,h,i]perylene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	
Benzo[k]fluoranthene					< 0.01	< 0.01	<0.01	<0.01	<0.011	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	
Benzo[a]pyrene TEQ (LOR)	0.922	40		24	0.03	0.03	0.03	0.03	0.03	0.03	0.09	0.03	0.03	0.03	0.03	
Organochlorine Pesticides																
Total DDT				240	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	-	-	<0.02	<0.02	<0.02	
alpha-BHC					<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	-	-	<0.005	<0.005	<0.005	
Aldrin					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	< 0.005	< 0.005	
beta-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	< 0.005	<0.005	
cis-Chlordane					< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	< 0.005	<0.005	
cis-Nonachlor					<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	-	-	<0.01	<0.01	<0.01	
delta-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	<0.005	< 0.005	
Dieldrin				45	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	-	-	< 0.05	<0.05	< 0.05	
Endosulfan I					< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	-	-	< 0.005	< 0.005	< 0.005	
Endosulfan II					<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	-	-	<0.01	< 0.01	<0.01	
Endosulfan sulphate					< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	-	-	< 0.005	< 0.005	< 0.005	
Endrin					<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	<0.05	< 0.05	<0.05	
Endrin aldehyde					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	<0.01	<0.01	<0.01	
Endrin ketone					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	<0.005	< 0.005	
gamma-BHC					<0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	-	-	<0.005	<0.005	<0.005	
Heptachlor					< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	< 0.005	<0.005	
Heptachlor epoxide					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	<0.005	< 0.005	
Hexachlorobenzene					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	< 0.005	< 0.005	<0.005	
Methoxychlor					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	-	-	<0.01	< 0.01	<0.01	
trans-nonachlor					< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	-	-	<0.01	<0.01	<0.01	
trans-Chlordane					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	-	-	<0.01	<0.01	<0.01	
Chlordane (sum)					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	<0.02	<0.02	<0.02	
TCMX (Surrogate) %					106.7	107.8	96.6	123.6	86.4	91	-	-	91.1	111.5	115.6	
BTEX		·	I					-	-	-	-		·		-	
Benzene											< 0.05	< 0.05				
Ethylbenzene											< 0.05	< 0.05				
Toluene											0.08	<0.05				
m,p-xylene											<0.05	<0.05				
o-xylene											<0.05	< 0.05				
											-	-				

NOTES: Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.
Background concentrations These concentrations are proposed in the 2007 Ecan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded
NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.
55- Bold where result exceeds background levels
55- Bold where result exceeds background levels
55- Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.
56- Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.
57- Benzo[a]pyrene (BAP) Toxic Equivalence Quotient (TEQ) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(k)fl

	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					HA18	HA16	HA16	HA17	HA17	HA20	HA23	HA20	HA21	HA21	HA15	
Job Number		Burwood Resource			170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	170743	
Date	Glev Farth	Recovery Park acceptance	Residential (10%	High-Density	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	UCL 95%
Denth (m)	0.07 20.00	criteria	produce)	Residential	0.5	0.1	0.5	0.1	0.5	0.1	0.1	0.5	0.1	0.5	0.1	
Goology		citeria			Soil	Soil	0.5	Soil	0.J Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		I			3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	
Heavy Metals (mg/kg dry wt)																
Arsenic	11	80	20	45	8.4	3.36	4.48	7.08	5.15	5.69	6.7	4.66	7.5	4.12	5.77	
Cadmium	0.28	400	3	230	0.019	0.015	0.1	0.12	0.012	0.089	0.11	0.008	0.068	0.044	0.071	
Chromium	19.3	2,700	460	1,500	25.8	23.4	18.5	21.5	23.2	21.1	20.4	19.5	22	17.3	18.9	
Copper	16.4	>10,000	>10,000	>10,000	10.4	10.5	7.2	7.17	8.1	10.2	11.7	6.27	7.51	8.79	7.68	
Lead	19.3	880	210	500	25.3	25	22.5	24.3	26.5	24.2	24.3	18.9	25.3	16.8	23.3	
Nickel	16.1	1,200	-	-	14.4	12.3	13.3	14.7	13.5	17.5	14.9	12.1	14.1	12.6	12.7	
Zinc	77.1	30,000	-	-	60.3	58.8	91.7	97.3	72.2	87.3	79.7	49.8	93.1	59.6	92.7	
Qualitative Asbestos																
Asbestos						ND					ND		ND			
Polycyclic Aromatic Hydrocarbons					-											
Acenaphthene					<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthylene					< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	
Anthracene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dibonz(a h)anthracono					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Eluoranthono					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Eluorono					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Indepo(1.2.2 cd)pyropo					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Naphthalene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenanthrene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Pyrene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzlajanthracene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene (BAP)					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo[b]&[j] fluoranthene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	
Benzo[g,h,i]perylene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	
Benzo[k]fluoranthene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo[a]pyrene TEQ (LOR)	0.922	40		24	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
Organochlorine Pesticides																
Total DDT				240	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
alpha-BHC					<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Aldrin					< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	
beta-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	
cis-Chlordane					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	
cis-Nonachlor					<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
delta-BHC					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	
Dieldrin				45	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Endosulfan I					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	
Endosulfan II					<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Endosulfan sulphate					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	
Endrin					< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	
Endrin aldehvde					< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	
Endrin ketone					<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
gamma-BHC					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Hentachlor					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Hentachlor enovide					<0.005	<0.005	<0.005									
Heyachlorobenzenc																
Methovychlor					<0.005	<0.005	<0.005	<0.005	<0.003	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
trans popachlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
					<0.02	<0.02	<0.02	<0.02 100 F	<0.02	<0.02	<0.02	<0.02 100.0	<0.02	<0.02	<u.uz< td=""><td></td></u.uz<>	
I CIVIX (SUITOgate) %		1			112	114.1	94.5	103.2	8.601	108.5	103./	100.6	103.9	101.0	112.8	

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These concentrations are proposed in the 2007 Ecan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

55 - Bold where result exceeds background levels

 55 - Bold where result exceeds background levels

 55 - Underline numeral (and highlighted yellow) where result exceeds Burwood Resource Recovery Park acceptance criteria.

 55 - Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.

 Benzo[a]pyrene (BAP) Toxic Equivalence Quotient (TEQ) is calculated as the sum of each of the detected concentrations of nine carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, benzo(k)fluoranthene, 1

 Background Concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils Report No. R07/19, July 2007, compared to the mean concentration CCC.

	Background Soils Concentrations		NES-CS							Sample Refere	nce and Result					
Sample ID					HA15	HA19	HA19	H-BH5	H-BH5	HA22	HA22	HA23				
lob Number		Burwood Resource			170743	170743	170743	170743	170743	170743	170743	170743				
Date	Glev Farth	Recovery Park accentance	Residential (10%	High-Density	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018				UCI 95%
Depth (m)		criteria	produce)	Residential	0.5	0.1	0.5	0.1	0.5	0.1	0.5	0.5				
Geology		criteria			Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Heavy Metals (mg/kg dry wt)					3011	3011	3011	3011	3011	301	5011	3011		I	I	·
Arconic	11	80	20	45	2.42	7.05	4.4	7 20	9.6	4.74	1 15	5.04		I	I	
Cadmium	0.29	400	20	220	0.010	0.11	4.4	0.11	9.0	4.74	4.15	0.009				
Chromium	10.28	2 700	460	1 500	24.6	21.0	24.6	22.2	0.023	17.2	16.9	0.008 22 F				
Copper	15.5	>10.000	×10.000	>10.000	0.03	12	0.0	8 / 8	25.5 8.67	9.52	8 70	0 11				
Lead	10.4	880	210	500	26.9	31.8	25.8	23.7	25.2	20.4	21.4	25.8				
Nickel	16.1	1 200	-	-	12.5	17.5	12.9	16.9	12.5	11.4	11.7	11.8				
Zinc	77.1	30,000	-	-	65.7	89.7	64.1	109	81.4	64	47.7	69.5				
	//.1	30,000			03.7	05.7	04.1	105	01.4	04	47.7	05.5		<u> </u>	<u> </u>	<u> </u>
Ashastas			I			ND				1						
Asbestos Relycyclic Aromatic Hydrocarbons						ND										
			I		<0.01	(0.01	(0.01	40.01	(0.01	-0.01	<0.01	<0.01	<u> </u>	1	1	
					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Acenaphthylene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Chrysene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01				
Cillyselle Dihonz(a h)anthracono					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01				
Eluoranthono					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Fluorono					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03	<0.02				
Indono(1,2,2,cd)pyrono					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Naphthalong					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Phopapthropo					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01				
Pyropo					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01				
Popz[a]anthracono					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.03	<0.02				
					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02 0.01	<0.02				
Benzo[b]&[i] fluoranthene					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Benzo[g h i]pervlene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				
Benzo[k]fluoranthene					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02				
Benzo[a]pyrepe TEO (LOB)	0 922	40		24	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03				
Organochlorine Pesticides	0.522	10	I	21	0.03	0.05	0.00	0.05	0.03	0.03	0.00	0.03				·
			I	240	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		1	1	I
alpha-BHC				210	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.005	<0.02				
Aldrin					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
beta-BHC					<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
cis-Chlordane					< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005				
cis-Nonachlor					< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
delta-BHC					< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005				
Dieldrin				45	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05				
Endosulfan I					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005				
Endosulfan II					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Endosulfan sulphate					< 0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005				
Endrin					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05				
Endrin aldehyde					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
Endrin ketone					< 0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005				
gamma-BHC					< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005				
Heptachlor					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005				
Heptachlor epoxide					< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005				
Hexachlorobenzene					< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				
Methoxychlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
trans-nonachlor					<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				
trans-Chlordane					<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01				
Chlordane (sum)					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				
TCMX (Surrogate) %					129.9	98.3	111.9	114.9	98.6	101.9	94.2	135.4				

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These concentrations are proposed in the 2007 ECan report "Background concentrations of selected trace elements in Canterbury soils" - In this case "Level 2 Background" uses the maximum recorded NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

55 - Bold where result exceeds background levels

<u>55</u> - Underline numeral (and highlighted yellow) where result exceeds Burwood Resource Recovery Park acceptance criteria.
 <u>55</u> - Highlighted green where results exceed NES-CS residential 10% produce land use soil contaminant standards.
 1 Background Concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils Report No. R07/19, July 2007, compared to the mean concentration CCC.
 ND - Not Detected

	Background Soils Concentrations	NES	-CS / BRANZ				Sample Referer	nce and Result		
Sample ID					BP1	BP1	BP2	BP2	BP3	BP3
Job Number		Burwood Resource	Posidontial (10%	High-Donsity	170743	170743	170743	170743	170743	170743
Date	Gley Earth	Recovery Park acceptance		Posidential	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Depth (m)		criteria	produce)	Residential	0.1	0.3	0.1	0.3	0.1	0.3
Geology					Soil	Soil	Soil	Soil	Soil	Soil
Qualitative Asbestos										
Asbestos	ND	ND			ND	ND	ND	ND	ND	ND

NOTES:

Contaminant concentrations in soil have been compared against selected acceptance guidelines as discussed in the report.

Background concentrations These

NES-CS: Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011. BRANZ: New Zealand Guidelines for Assessing and Managing Asbestos in Soil, Nov 2017

ND - Not Detected

APPENDIX F

Laboratory Transcripts

Report Date: 21 Dec 2018

Certificate Number: P1812201041

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123

Client Reference: 18-38911

Dear Karla Chapman,

Re: Asbestos Soil Identification Analysis – 18-38911

8 sample(s) received on 20 Dec 2018 by Julie Saia.

The results of fibre analysis were performed by Georgina Jackson of Precise Consulting and Laboratory Ltd on 21 Dec 2018.

The sample(s) were stated to be from 18-38911.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Georgina Jackson.

Yours sincerely

Georgina Jackson

Georgina Jackson PRECISE LABORATORY IDENTIFIER

P1812201041 - **1** of 3

Sample Analysis Results

Certificate Number: P1812201041 Report Date: 21 Dec 2018 Site Location: 18-38911

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

Georgina Jackson

Approved Identifier: Georgina Jackson

Reviewed by:

Georgina Jackson

Key Technical Person: Georgina Jackson

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	HA3 S0.1	- Non-Homogeneous Soil 68.5g	No Asbestos Detected Organic Fibres
S002	HA10 S0.1	۔ Non-Homogeneous Soil 68.0g	No Asbestos Detected Organic Fibres
S003	HA8 S0.1	۔ Non-Homogeneous Soil 77.0g	No Asbestos Detected Organic Fibres
S004	HA1 S0.1	۔ Non-Homogeneous Soil 64.0g	No Asbestos Detected Organic Fibres
S005	BP1 S0.1	- Non-Homogeneous Soil 52.0g	No Asbestos Detected Organic Fibres
S006	BP1 S0.3	۔ Non-Homogeneous Soil 99.0g	No Asbestos Detected Organic Fibres
S007	BP2 S0.1	- Non-Homogeneous Soil 112.5g	No Asbestos Detected Organic Fibres
S008	BP2 S0.3	۔ Non-Homogeneous Soil 44.5g	No Asbestos Detected Organic Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 1, 30 Greenpark Road, Penrose, Auckland 8023

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

P1812201041 - 2 of 3

Appendix 1: Soil Analysis Raw Data

Certificate Number: P1812201041 Report Date: 21 Dec 2018 Site Location: 18-38911

* The reporting limit for this standard is 0.1g/kg

** Trace asbestos present is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased

*** Asbestos weights listed in this table are indicative only and are outside of IANZ accreditation and is therefore not endorsed by IANZ.

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Riley Consultants Ltd 12 Moorhouse Ave Christchurch Attention: Leanne Sutherland Phone: 03 3794402 Email: ccameron@riley.co.nz

Sampling Site: 141 South Belt, Rangiora

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Lab Reference:

Date Received:

Order Number:

Reference:

Date Completed: 10/01/2019

Submitted by:

18-38911

AVD,Fy,RW

19/12/2018

170743

Heavy Metals in Soil

	Client Sample ID			HA3 S0.5 0.5	HA4 S0.1 0.1	HA4 S0.5 0.5	HA10 S0.1 0.1
	Date Sampled		17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-1	18-38911-2	18-38911-3	18-38911-4	18-38911-5
Arsenic	mg/kg dry wt	0.125	6.36	5.97	7.43	5.64	7.54
Cadmium	mg/kg dry wt	0.005	0.086	0.017	0.053	0.006	0.11
Chromium	mg/kg dry wt	0.125	16.5	20.3	15.7	20.9	17.1
Copper	mg/kg dry wt	0.075	8.06	5.59	6.82	10.7	8.01
Lead	mg/kg dry wt	0.05	23.1	23.4	22.7	25.1	23.4
Nickel	mg/kg dry wt	0.05	11.3	12.5	10.6	13.5	11.3
Zinc	mg/kg dry wt	0.05	81.7	75.3	68.5	63.2	86.4

Heavy Metals in Soil

Client Sample ID			HA10 S0.5 0.5	HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
	Date Sampled		17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-6	18-38911-7	18-38911-8	18-38911-9	18-38911-10
Arsenic	mg/kg dry wt	0.125	29.5	6.31	8.99	6.18	7.71
Cadmium	mg/kg dry wt	0.005	0.057	0.11	0.023	0.021	0.13
Chromium	mg/kg dry wt	0.125	23.6	16.9	20.6	21.0	17.0
Copper	mg/kg dry wt	0.075	10.3	9.65	6.60	12.1	15.0
Lead	mg/kg dry wt	0.05	42.1	24.6	26.6	23.8	166
Nickel	mg/kg dry wt	0.05	19.2	12.4	12.8	14.1	11.0
Zinc	mg/kg dry wt	0.05	113	92.5	80.9	63.5	167

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Heavy Metals in Soil

	Client Sample ID			H-BH2 S0.1 0.1	H-BH2 S0.5 0.5	H-BH2 S0.8 0.8	H-BH1 S0.1 0.1
	Date Sampled		17/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-11	18-38911-12	18-38911-13	18-38911-14	18-38911-15
Arsenic	mg/kg dry wt	0.125	4.64	8.51	4.63	3.58	5.29
Cadmium	mg/kg dry wt	0.005	0.029	0.059	0.019	0.010	0.069
Chromium	mg/kg dry wt	0.125	25.4	19.3	21.5	20.2	18.0
Copper	mg/kg dry wt	0.075	11.3	7.14	12.0	9.75	7.18
Lead	mg/kg dry wt	0.05	31.1	25.4	29.0	22.0	22.7
Nickel	mg/kg dry wt	0.05	15.9	12.5	13.8	11.7	13.6
Zinc	mg/kg dry wt	0.05	80.9	90.1	66.5	49.0	86.8

Heavy Metals in Soil

Client Sample ID			H-BH1 S0.5 0.5	H-BH1 S0.7 0.7	HA8 S0.1 0.1	HA8 S0.5 0.5	HA1 S0.1 0.1
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-16	18-38911-17	18-38911-18	18-38911-19	18-38911-20
Arsenic	mg/kg dry wt	0.125	3.98	4.67	6.46	3.06	5.14
Cadmium	mg/kg dry wt	0.005	0.014	0.008	0.088	0.013	0.074
Chromium	mg/kg dry wt	0.125	23.2	17.3	18.0	22.4	15.1
Copper	mg/kg dry wt	0.075	8.96	7.44	11.0	8.90	6.42
Lead	mg/kg dry wt	0.05	28.8	19.7	32.6	25.7	20.8
Nickel	mg/kg dry wt	0.05	12.6	9.05	13.9	10.4	10.0
Zinc	mg/kg dry wt	0.05	62.1	40.7	119	46.7	69.0

Heavy Metals in Soil

Client Sample ID			HA1 S0.5 0.5	HA1 S0.9 0.9	H-BH6 S0.1 0.1	H-BH6 S0.5 0.5	H-BH6 S1.0 1.0
	Date Sampled		18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-21	18-38911-22	18-38911-23	18-38911-24	18-38911-25
Arsenic	mg/kg dry wt	0.125	7.90	3.89	7.54	4.45	4.06
Cadmium	mg/kg dry wt	0.005	0.069	0.046	0.066	0.007	0.024
Chromium	mg/kg dry wt	0.125	22.7	25.9	19.7	19.8	14.4
Copper	mg/kg dry wt	0.075	7.37	17.9	9.93	6.37	7.43
Lead	mg/kg dry wt	0.05	34.9	40.2	27.9	21.6	14.4
Nickel	mg/kg dry wt	0.05	14.9	18.1	16.1	10.4	15.2
Zinc	mg/kg dry wt	0.05	96.7	96.6	83.5	46.9	51.1

Heavy Metals in Soil

	Clien	t Sample ID	HA14 S0.1 0.1	HA7 S0.1 0.1	HA7 S0.5 0.5
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-30	18-38911-31	18-38911-32
Arsenic	mg/kg dry wt	0.125	7.32	7.25	4.20
Cadmium	mg/kg dry wt	0.005	0.060	0.078	0.014
Chromium	mg/kg dry wt	0.125	19.5	20.0	16.6
Copper	mg/kg dry wt	0.075	10.5	11.0	4.79
Lead	mg/kg dry wt	0.05	25.8	26.8	21.1
Nickel	mg/kg dry wt	0.05	15.5	14.4	10.3
Zinc	mg/kg dry wt	0.05	81.4	83.5	58.6

	Client	t Sample ID	HA3 S0.1 0.1	HA3 S0.5 0.5	HA4 S0.1 0.1	HA4 S0.5 0.5	HA10 S0.1 0.1
	Da	te Sampled	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-1	18-38911-2	18-38911-3	18-38911-4	18-38911-5
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	< 0.003	<0.003	< 0.003	< 0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	92.9	87.8	85.4	85.9	82.4

Organochlorine Pesticides - Soil

	Client Sample ID		HA10 S0.5 0.5	HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
	Da	te Sampled	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-6	18-38911-7	18-38911-8	18-38911-9	18-38911-10
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Report ID 18-38911-[R00]

Report Date 10/01/2019

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client Sample ID			HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
	Da	te Sampled	17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	80.9	81.5	88.4	90.4	82.5

Organochlorine Pesticides - Soil

	Client Sample ID		HA2 S0.5 0.5	H-BH2 S0.1 0.1	H-BH2 S0.5 0.5	H-BH2 S0.8 0.8	H-BH1 S0.1 0.1
	Da	te Sampled	17/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-11	18-38911-12	18-38911-13	18-38911-14	18-38911-15
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	93.6	82.1	92.7	97.6	91.2

Report Date 10/01/2019

	Client	Sample ID	H-BH1 S0.5 0.5	H-BH1 S0.7 0.7	HA8 S0.1 0.1	HA8 S0.5 0.5	HA1 S0.1 0.1
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-16	18-38911-17	18-38911-18	18-38911-19	18-38911-20
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	< 0.003	<0.003	< 0.003	< 0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	88.4	87.3	93.0	96.7	85.0

Organochlorine Pesticides - Soil

Client Sample ID			HA1 S0.5 0.5	HA1 S0.9 0.9	H-BH6 S0.1 0.1	H-BH6 S0.5 0.5	H-BH6 S1.0 1.0
Date Sampled			18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-21	18-38911-22	18-38911-23	18-38911-24	18-38911-25
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	< 0.003	< 0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Report ID 18-38911-[R00]

Report Date 10/01/2019

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	HA1 S0.5 0.5	HA1 S0.9 0.9	H-BH6 S0.1 0.1	H-BH6 S0.5 0.5	H-BH6 S1.0 1.0
	Date Sampled		18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	78.7	80.0	93.3	81.8	79.3

Organochlorine Pesticides - Soil

	Clien	t Sample ID	HA14 S0.1 0.1	HA7 S0.1 0.1	HA7 S0.5 0.5
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-30	18-38911-31	18-38911-32
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	80.7	116.6	98.2

Report ID 18-38911-[R00]

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			HA3 S0.1 0.1	HA3 S0.5 0.5	HA4 S0.1 0.1	HA4 S0.5 0.5	HA10 S0.1 0.1
Date Sampled			17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-1	18-38911-2	18-38911-3	18-38911-4	18-38911-5
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.024
Benzo[a]pyrene	mg/kg dry wt	0.01	0.01	<0.01	0.01	<0.01	0.03
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	0.04
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.024
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	0.03
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.024
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	0.03
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.07
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	0.01	<0.01	0.01	<0.01	0.04
Anthracene-d10 (Surrogate)	%	1	97.5	97.8	97.5	98.2	97.6

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			HA10 S0.5 0.5	HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
Date Sampled			17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte	Unit	Reporting Limit	18-38911-6	18-38911-7	18-38911-8	18-38911-9	18-38911-10
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	0.02	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.04	0.03	0.03	0.03	0.03

Report ID 18-38911-[R00]
	Client Sample ID		HA10 S0.5 0.5	HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
	Date Sampled		17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	0.02	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	96.9	97.6	96.3	96.2	96.3

Polycyclic Aromatic Hydrocarbons - Soil

	Clien	t Sample ID	HA2 S0.5 0.5	H-BH2 S0.1 0.1	H-BH2 S0.5 0.5	H-BH2 S0.8 0.8	H-BH1 S0.1 0.1
	Da	te Sampled	17/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-11	18-38911-12	18-38911-13	18-38911-14	18-38911-15
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	96.7	95.6	91.4	90.9	92.9

Polycyclic Aromatic Hydrocarbons - Soil

	Client Sample ID		H-BH1 S0.5 0.5	H-BH1 S0.7 0.7	HA8 S0.1 0.1	HA8 S0.5 0.5	HA1 S0.1 0.1
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-16	18-38911-17	18-38911-18	18-38911-19	18-38911-20
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	0.03	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	0.04	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	0.05	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	0.02	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	0.03	<0.01	<0.01

Report ID 18-38911-[R00]

	Client Sample ID		H-BH1 S0.5 0.5	H-BH1 S0.7 0.7	HA8 S0.1 0.1	HA8 S0.5 0.5	HA1 S0.1 0.1
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	0.05	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	0.03	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	0.05	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.07	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	0.06	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	94.9	94.9	96.0	95.6	96.1

Polycyclic Aromatic Hydrocarbons - Soil

	Clien	t Sample ID	HA1 S0.5 0.5	HA1 S0.9 0.9	H-BH6 S0.1 0.1	H-BH6 S0.5 0.5	H-BH6 S1.0 1.0
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-21	18-38911-22	18-38911-23	18-38911-24	18-38911-25
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	96.3	95.7	94.7	94.7	91.6

Polycyclic Aromatic Hydrocarbons - Soil

	Client	Sample ID	HA14 S0.1 0.1	HA7 S0.1 0.1	HA7 S0.5 0.5
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-30	18-38911-31	18-38911-32
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01

Report ID 18-38911-[R00]

	Client	Sample ID	HA14 S0.1 0.1	HA7 S0.1 0.1	HA7 S0.5 0.5
	Da	te Sampled	18/12/2018	18/12/2018	18/12/2018
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	95.0	98.6	97.6

Moisture Content

CI	Client Sample ID		HA3 S0.5 0.5	HA4 S0.1 0.1	HA4 S0.5 0.5	HA10 S0.1 0.1
	Date Sampled		17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte U	it Reporting	18-38911-1	18-38911-2	18-38911-3	18-38911-4	18-38911-5
Moisture Content	% 1	24	19	22	19	71

Moisture Content

C	Client Sample ID		HA10 S0.5 0.5	HA9 S0.1 0.1	HA9 S0.5 0.5	HA9 S0.9 0.9	HA2 S0.1 0.1
	Date Sampled		17/12/2018	17/12/2018	17/12/2018	17/12/2018	17/12/2018
Analyte L	Jnit	Reporting Limit	18-38911-6	18-38911-7	18-38911-8	18-38911-9	18-38911-10
Moisture Content	%	1	23	25	20	20	19

Moisture Content

Clier	Client Sample ID		H-BH2 S0.1 0.1	H-BH2 S0.5 0.5	H-BH2 S0.8 0.8	H-BH1 S0.1 0.1
Da	Date Sampled		18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte Unit	Reporting Limit	18-38911-11	18-38911-12	18-38911-13	18-38911-14	18-38911-15
Moisture Content %	1	19	23	21	21	18

Moisture Content

CI	Client Sample ID		H-BH1 S0.7 0.7	HA8 S0.1 0.1	HA8 S0.5 0.5	HA1 S0.1 0.1
Date Sampled		18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte U	it Reporting	18-38911-16	18-38911-17	18-38911-18	18-38911-19	18-38911-20
Moisture Content	6 1	19	16	20	21	23

Moisture Content

Clie	Client Sample ID		HA1 S0.9 0.9	H-BH6 S0.1 0.1	H-BH6 S0.5 0.5	H-BH6 S1.0 1.0
Date Sampled		18/12/2018	18/12/2018	18/12/2018	18/12/2018	18/12/2018
Analyte Uni	Reporting Limit	18-38911-21	18-38911-22	18-38911-23	18-38911-24	18-38911-25
Moisture Content %	1	22	22	22	18	13

Moisture Content

C	Client	Sample ID	HA14 S0.1 0.1	HA7 S0.1 0.1	HA7 S0.5 0.5
	Date Sampled		18/12/2018	18/12/2018	18/12/2018
Analyte	Unit	Reporting Limit	18-38911-30	18-38911-31	18-38911-32
Moisture Content	%	1	22	27	21

Method Summary

OCP in Soil	Samples are extracted with hexane, pre-concetrated then analysed by GC-MSMS.(In-house procedure). (Chlordane (sum) is calculated from the main actives in technical Chlordane: Chlordane, Nonachlor and Heptachlor)
Total DDT	Sum of DDT, DDD and DDE (4,4' and 2,4 isomers)
PAH in Soil	Solvent extraction, silica cleanup, followed by GC-MS analysis. Benzo[a]pyrene TEQ (LOR) : The most conservative TEQ estimate, where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. Benzo[a]pyrene TEQ (Zero) : The least conservative TEQ estimate, PAHs reported as less than the limit of reporting (LOR) are not included in the TEQ calculation. Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Environment. 2011.
Moisture	Moisture content is determined gravimetrically by drying at 103 °C.

lla

Elizabeth Fitzgerald, B.Sc. Inorganics Team Leader

J. Correy, Ph.D.

Signatory

Report Date: 07 Jan 2019

Certificate Number: P1901070830

CONSULTING & LABORATORY

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123

Client Reference: 18-39303

Dear Karla Chapman,

Re: Asbestos Soil Identification Analysis – 18-39303

13 sample(s) received on 07 Jan 2019 by Jesse Bryant.

The results of fibre analysis were performed by Alice Knowles of Precise Consulting and Laboratory Ltd on 07 Jan 2019.

The sample(s) were stated to be from 18-39303.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Alice Knowles.

Yours sincerely

houtes

Alice Knowles PRECISE LABORATORY IDENTIFIER

P1901070830 - **1** of 4

Sample Analysis Results

Certificate Number: P1901070830 Report Date: 07 Jan 2019 Site Location: 18-39303

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

witch

Approved Identifier: Alice Knowles

Reviewed by:

outop

Key Technical Person: Alice Knowles

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	HABH3 SO.1	- Non-Homogeneous Soil 86.00g	No Asbestos Detected Organic Fibres
S002	HA5 S0.1	- Non-Homogeneous Soil 74.02g	No Asbestos Detected Organic Fibres
S003	HBH4 S0.1	۔ Non-Homogeneous Soil 65.57g	No Asbestos Detected Organic Fibres
S004	HA12 S0.1	۔ Non-Homogeneous Soil 77.47g	No Asbestos Detected Organic Fibres
S005	FT1 S0.1	- Non-Homogeneous Soil 55.38g	No Asbestos Detected Organic Fibres
S006	FT1 S0.3	- Non-Homogeneous Soil 84.56g	No Asbestos Detected Organic Fibres
S007	BP3 S0.1	۔ Non-Homogeneous Soil 89.46g	No Asbestos Detected Organic Fibres
S008	BP3 S0.3	- Non-Homogeneous Soil 94.59g	No Asbestos Detected Organic Fibres

P1901070830 - 2 of 4

Sample Analysis Results

Certificate Number: P1901070830 Report Date: 07 Jan 2019 Site Location: 18-39303

Г

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S009	HA15 S0.1	- Non-Homogeneous Soil 91.75g	No Asbestos Detected Organic Fibres
S010	HA17 S0.1	- Non-Homogeneous Soil 96.69g	No Asbestos Detected Organic Fibres
S011	HA24 S0.1	- Non-Homogeneous Soil 87.73g	No Asbestos Detected Organic Fibres
S012	HA22 S0.1	- Non-Homogeneous Soil 82.53g	No Asbestos Detected Organic Fibres
S013	HA20 S0.1	- Non-Homogeneous Soil 95.38g	No Asbestos Detected Organic Fibres

P1901070830 - 3 of 4

Appendix 1: Soil Analysis Raw Data

Certificate Number: P1901070830 Report Date: 07 Jan 2019 Site Location: 18-39303

Sample ID	Client Sample ID	Total Sample Weight (g)	ACM Approximate Dimensions (g)*	Form	Trace Asbestos Detected**
S001	HABH3 S0.1	86.00	-	No Asbestos Detected	Ν
S002	HA5 S0.1	74.02	-	No Asbestos Detected	Ν
S003	HBH4 S0.1	65.57	-	No Asbestos Detected	Ν
S004	HA12 S0.1	77.47	-	No Asbestos Detected	Ν
S005	FT1 S0.1	55.38	-	No Asbestos Detected	N
S006	FT1 S0.3	84.56	-	No Asbestos Detected	N
S007	BP3 S0.1	89.46	-	No Asbestos Detected	N
S008	BP3 S0.3	94.59	-	No Asbestos Detected	N
S009	HA15 S0.1	91.75	-	No Asbestos Detected	Ν
S010	HA17 S0.1	96.69	-	No Asbestos Detected	N
S011	HA24 S0.1	87.73	-	No Asbestos Detected	N
S012	HA22 S0.1	82.53	-	No Asbestos Detected	Ν
S013	HA20 S0.1	95.38	-	No Asbestos Detected	Ν

* The reporting limit for this standard is 0.1g/kg

** Trace asbestos present is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased

*** Asbestos weights listed in this table are indicative only and are outside of IANZ accreditation and is therefore not endorsed by IANZ.

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Riley Consultants Ltd 12 Moorhouse Ave Christchurch Attention: Leanne Sutherland Phone: 03 379 4402 Email: ccameron@riley.co.nz

Sampling Site: 141 South Belt, Rangiora

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Lab Reference:

Date Received:

Order Number:

Reference:

Date Completed: 9/01/2019

Submitted by:

18-39303

AvD, FY, RW

27/12/2018

170743

Heavy Metals in Soil

Client Sample ID			HABH3 S0.1 0.1	HABH3 S0.5 0.5	HA11 S0.1 0.1	HA11 S0.5 0.5	HA5 S0.1 0.1
	Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-1	18-39303-2	18-39303-4	18-39303-5	18-39303-7
Arsenic	mg/kg dry wt	0.125	5.06	6.07	9.63	11.2	5.21
Cadmium	mg/kg dry wt	0.005	0.024	0.12	0.076	0.025	0.12
Chromium	mg/kg dry wt	0.125	19.4	17.9	19.6	22.2	22.1
Copper	mg/kg dry wt	0.075	8.57	35.9	6.55	9.64	10.3
Lead	mg/kg dry wt	0.05	29.2	121	25.3	28.9	31.5
Nickel	mg/kg dry wt	0.05	12.1	13.3	12.6	13.5	15.6
Zinc	mg/kg dry wt	0.05	76.4	145	85.4	82.6	102

Heavy Metals in Soil

Client Sample ID			HA5 S0.5 0.5	HA6 S0.1 0.1	HA6 S0.5 0.5	HBH4 S0.1 0.1	HBH4 S0.5 0.5
	Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-8	18-39303-10	18-39303-11	18-39303-13	18-39303-14
Arsenic	mg/kg dry wt	0.125	9.25	5.54	2.89	4.44	3.38
Cadmium	mg/kg dry wt	0.005	0.032	0.19	0.027	0.12	0.017
Chromium	mg/kg dry wt	0.125	25.2	19.0	24.6	18.3	20.2
Copper	mg/kg dry wt	0.075	14.3	9.02	13.9	6.77	9.58
Lead	mg/kg dry wt	0.05	32.5	27.1	30.1	25.6	24.7
Nickel	mg/kg dry wt	0.05	16.2	14.1	16.1	13.0	11.7
Zinc	mg/kg dry wt	0.05	85.2	92.9	90.0	76.5	73.8

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Heavy Metals in Soil

Client Sample ID			HA12 S0.1 0.1	HA12 S0.5 0.5	FT1 S0.1 0.1	FT1 S0.3 0.3	HA15 S0.1 0.1
Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	
Analyte	Unit	Reporting Limit	18-39303-15	18-39303-16	18-39303-19	18-39303-20	18-39303-23
Arsenic	mg/kg dry wt	0.125	7.28	5.16	59.0	6.76	4.51
Cadmium	mg/kg dry wt	0.005	0.091	0.029	0.36	0.061	0.086
Chromium	mg/kg dry wt	0.125	20.0	20.9	42.2	20.8	18.7
Copper	mg/kg dry wt	0.075	6.69	9.54	62.2	7.65	10.8
Lead	mg/kg dry wt	0.05	25.9	22.8	223	37.2	21.2
Nickel	mg/kg dry wt	0.05	12.7	11.9	14.4	13.4	14.4
Zinc	mg/kg dry wt	0.05	78.4	69.6	340	94.6	91.6

Heavy Metals in Soil

Client Sample ID			HA15 S0.5 0.5	HA19 S0.1 0.1	HA19 S0.5 0.5	HA17 S0.1 0.1	HA17 S0.5 0.5
	Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-24	18-39303-25	18-39303-26	18-39303-27	18-39303-28
Arsenic	mg/kg dry wt	0.125	4.03	7.83	8.40	3.36	4.48
Cadmium	mg/kg dry wt	0.005	0.016	0.088	0.019	0.015	0.10
Chromium	mg/kg dry wt	0.125	27.2	23.1	25.8	23.4	18.5
Copper	mg/kg dry wt	0.075	14.3	9.86	10.4	10.5	7.20
Lead	mg/kg dry wt	0.05	29.9	26.6	25.3	25.0	22.5
Nickel	mg/kg dry wt	0.05	11.6	18.6	14.4	12.3	13.3
Zinc	mg/kg dry wt	0.05	52.8	102	60.3	58.8	91.7

Heavy Metals in Soil

Client Sample ID			HA18 S0.1 0.1	HA18 S0.5 0.5	HA21 S0.1 0.1	HA24 S0.1 0.1	HA21 S0.5 0.5
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018	
Analyte	Unit	Reporting Limit	18-39303-29	18-39303-30	18-39303-32	18-39303-33	18-39303-34
Arsenic	mg/kg dry wt	0.125	7.08	5.15	5.69	6.70	4.66
Cadmium	mg/kg dry wt	0.005	0.12	0.012	0.089	0.11	0.008
Chromium	mg/kg dry wt	0.125	21.5	23.2	21.1	20.4	19.5
Copper	mg/kg dry wt	0.075	7.17	8.10	10.2	11.7	6.27
Lead	mg/kg dry wt	0.05	24.3	26.5	24.2	24.3	18.9
Nickel	mg/kg dry wt	0.05	14.7	13.5	17.5	14.9	12.1
Zinc	mg/kg dry wt	0.05	97.3	72.2	87.3	79.7	49.8

Heavy Metals in Soil

Client Sample ID			HA22 S0.1 0.1	HA22 S0.5 0.5	HA16 S0.1 0.1	HA16 S0.5 0.5	HA20 S0.1 0.1
	Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-35	18-39303-36	18-39303-37	18-39303-38	18-39303-39
Arsenic	mg/kg dry wt	0.125	7.50	4.12	5.77	2.43	7.05
Cadmium	mg/kg dry wt	0.005	0.068	0.044	0.071	0.019	0.11
Chromium	mg/kg dry wt	0.125	22.0	17.3	18.9	24.6	21.9
Copper	mg/kg dry wt	0.075	7.51	8.79	7.68	9.93	12.0
Lead	mg/kg dry wt	0.05	25.3	16.8	23.3	26.9	31.8
Nickel	mg/kg dry wt	0.05	14.1	12.6	12.7	12.5	17.5
Zinc	mg/kg dry wt	0.05	93.1	59.6	92.7	65.7	89.7

Heavy Metals in Soil

	Client Sample ID			HBH5 S0.1 0.1	HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-40	18-39303-41	18-39303-42	18-39303-43	18-39303-44
Arsenic	mg/kg dry wt	0.125	4.40	7.39	9.60	4.74	4.15
Cadmium	mg/kg dry wt	0.005	0.013	0.11	0.023	0.074	0.082
Chromium	mg/kg dry wt	0.125	24.6	22.3	23.5	17.2	16.8
Copper	mg/kg dry wt	0.075	9.90	8.48	8.67	9.52	8.79
Lead	mg/kg dry wt	0.05	25.8	23.7	25.2	20.4	21.4
Nickel	mg/kg dry wt	0.05	12.9	16.9	12.5	11.4	11.7
Zinc	mg/kg dry wt	0.05	64.1	109	81.4	64.0	47.7

Heavy Metals in Soil

	Clien	t Sample ID	HA24 S0.5 0.5
	Da	te Sampled	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-45
Arsenic	mg/kg dry wt	0.125	5.04
Cadmium	mg/kg dry wt	0.005	0.008
Chromium	mg/kg dry wt	0.125	22.5
Copper	mg/kg dry wt	0.075	9.11
Lead	mg/kg dry wt	0.05	25.8
Nickel	mg/kg dry wt	0.05	11.8
Zinc	mg/kg dry wt	0.05	69.5

Organochlorine Pesticides - Soil

	Client Sample ID		HABH3 S0.1 0.1	HABH3 S0.5 0.5	HA11 S0.1 0.1	HA11 S0.5 0.5	HA5 S0.1 0.1
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-1	18-39303-2	18-39303-4	18-39303-5	18-39303-7
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	< 0.003	<0.003	<0.003	< 0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005

Report ID 18-39303-[R00]

Report Date 10/01/2019

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	t Sample ID	HABH3 S0.1 0.1	HABH3 S0.5 0.5	HA11 S0.1 0.1	HA11 S0.5 0.5	HA5 S0.1 0.1
	Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	111.3	115.2	98.0	99.1	103.6

Organochlorine Pesticides - Soil

	Client	t Sample ID	HA5 S0.5 0.5	HA6 S0.1 0.1	HA6 S0.5 0.5	HBH4 S0.1 0.1	HBH4 S0.5 0.5
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-8	18-39303-10	18-39303-11	18-39303-13	18-39303-14
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	95.9	106.7	107.8	96.6	123.6

Organochlorine Pesticides - Soil

Client Sample ID			HA12 S0.1 0.1	HA12 S0.5 0.5	HA15 S0.1 0.1	HA15 S0.5 0.5	HA19 S0.1 0.1
Date Sampled			20/12/2018	20/12/2018	20/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-15	18-39303-16	18-39303-23	18-39303-24	18-39303-25
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005

	Client Sample ID		HA12 S0.1 0.1	HA12 S0.5 0.5	HA15 S0.1 0.1	HA15 S0.5 0.5	HA19 S0.1 0.1
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	21/12/2018	21/12/2018
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	86.4	91.0	91.1	111.5	115.6

Organochlorine Pesticides - Soil

	Client Sample ID		HA19 S0.5 0.5	HA17 S0.1 0.1	HA17 S0.5 0.5	HA18 S0.1 0.1	HA18 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-26	18-39303-27	18-39303-28	18-39303-29	18-39303-30
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

Client Sample ID			HA19 S0.5 0.5	HA17 S0.1 0.1	HA17 S0.5 0.5	HA18 S0.1 0.1	HA18 S0.5 0.5
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018	
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	112.0	114.1	94.5	109.5	103.8

Organochlorine Pesticides - Soil

	Client	t Sample ID	HA21 S0.1 0.1	HA24 S0.1 0.1	HA21 S0.5 0.5	HA22 S0.1 0.1	HA22 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-32	18-39303-33	18-39303-34	18-39303-35	18-39303-36
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	108.5	103.7	100.6	103.9	101.6

Organochlorine Pesticides - Soil

Client Sample ID			HA16 S0.1 0.1	HA16 S0.5 0.5	HA20 S0.1 0.1	HA20 S0.5 0.5	HBH5 S0.1 0.1
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018	
Analyte	Unit	Reporting Limit	18-39303-37	18-39303-38	18-39303-39	18-39303-40	18-39303-41
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	<0.003	<0.003	<0.003	<0.003	<0.003

	Client Sample ID		HA16 S0.1 0.1	HA16 S0.5 0.5	HA20 S0.1 0.1	HA20 S0.5 0.5	HBH5 S0.1 0.1
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
4,4'-DDE	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	115.8	129.9	98.3	111.9	114.9

Organochlorine Pesticides - Soil

Client Sample ID			HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5	HA24 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-42	18-39303-43	18-39303-44	18-39303-45
2,4'-DDD	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
2,4'-DDE	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005
2,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
4,4'-DDD	mg/kg dry wt	0.003	< 0.003	< 0.003	<0.003	< 0.003
4,4'-DDE	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005
4,4'-DDT	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Total DDT	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02
alpha-BHC	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005
Aldrin	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
beta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
cis-Chlordane	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005
cis-Nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Dieldrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan I	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Endosulfan II	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan sulphate	mg/kg dry wt	0.005	< 0.005	<0.005	<0.005	<0.005
Endrin	mg/kg dry wt	0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
Endrin ketone	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
gamma-BHC	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Heptachlor	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005

	Client	Sample ID	HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5	HA24 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Heptachlor epoxide	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Hexachlorobenzene	mg/kg dry wt	0.005	<0.005	<0.005	<0.005	<0.005
Methoxychlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
trans-nonachlor	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
trans-Chlordane	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01
Chlordane (sum)	mg/kg dry wt	0.02	<0.020	<0.020	<0.020	<0.020
TCMX (Surrogate)	%	1	98.6	101.9	94.2	135.4

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID		HABH3 S0.1 0.1	HABH3 S0.5 0.5	HA11 S0.1 0.1	HA11 S0.5 0.5	HA5 S0.1 0.1	
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-1	18-39303-2	18-39303-4	18-39303-5	18-39303-7
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	98.6	97.9	99.1	98.2	97.0

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			HA5 S0.5 0.5	HA6 S0.1 0.1	HA6 S0.5 0.5	HBH4 S0.1 0.1	HBH4 S0.5 0.5
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-8	18-39303-10	18-39303-11	18-39303-13	18-39303-14
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Report ID 18-39303-[R00]

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client Sample ID			HA6 S0.1 0.1	HA6 S0.5 0.5	HBH4 S0.1 0.1	HBH4 S0.5 0.5
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	98.6	98.0	98.5	98.6	98.7

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID		HA12 S0.1 0.1	HA12 S0.5 0.5	FT1 S0.1 0.1	FT1 S0.3 0.3	HA15 S0.1 0.1	
	Da	te Sampled	20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-15	18-39303-16	18-39303-19	18-39303-20	18-39303-23
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	0.04	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.011	<0.01	0.06	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	0.07	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	0.04	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.011	<0.01	0.03	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.011	<0.01	0.06	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	0.10	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.011	<0.01	0.04	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.011	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.011	<0.01	0.03	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	0.09	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.09	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	0.08	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	100.3	99.1	100.0	99.8	100.0

Client Sample ID		HA15 S0.5 0.5	HA19 S0.1 0.1	HA19 S0.5 0.5	HA17 S0.1 0.1	HA17 S0.5 0.5	
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-24	18-39303-25	18-39303-26	18-39303-27	18-39303-28
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	99.0	96.2	97.6	99.0	99.6

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			HA18 S0.1 0.1	HA18 S0.5 0.5	HA21 S0.1 0.1	HA24 S0.1 0.1	HA21 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-29	18-39303-30	18-39303-32	18-39303-33	18-39303-34
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03

	Client	Sample ID	HA18 S0.1 0.1	HA18 S0.5 0.5	HA21 S0.1 0.1	HA24 S0.1 0.1	HA21 S0.5 0.5
	Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	110 % 1		99.9	99.0	98.5	99.4	100.1

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID		HA22 S0.1 0.1	HA22 S0.5 0.5	HA16 S0.1 0.1	HA16 S0.5 0.5	HA20 S0.1 0.1	
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-35	18-39303-36	18-39303-37	18-39303-38	18-39303-39
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	99.0	100.3	96.7	98.0	96.6

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			HA20 S0.5 0.5	HBH5 S0.1 0.1	HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-40	18-39303-41	18-39303-42	18-39303-43	18-39303-44
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	0.01

	Client	Sample ID	HA20 S0.5 0.5	HBH5 S0.1 0.1	HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5
	Da	te Sampled	21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	0.03
Fluorene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Pyrene	mg/kg dry wt	0.02	<0.02	<0.02	<0.02	<0.02	0.03
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Anthracene-d10 (Surrogate)	%	1	97.7	98.3	95.6	97.8	99.8

Polycyclic Aromatic Hydrocarbons - Soil

	Client Sample ID							
	Da	te Sampled	21/12/2018					
Analyte	Unit	Reporting Limit	18-39303-45					
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.01					
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.01					
Acenaphthene	mg/kg dry wt	0.01	<0.01					
Acenaphthylene	mg/kg dry wt	0.01	<0.01					
Anthracene	mg/kg dry wt	0.01	<0.01					
Benz[a]anthracene	mg/kg dry wt	0.02	<0.02					
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.01					
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.02					
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.02					
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.01					
Chrysene	mg/kg dry wt	0.01	<0.01					
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.01					
Fluoranthene	mg/kg dry wt	0.02	<0.02					
Fluorene	mg/kg dry wt	0.01	<0.01					
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.01					
Naphthalene	mg/kg dry wt	0.01	<0.01					
Phenanthrene	mg/kg dry wt	0.01	<0.01					
Pyrene	mg/kg dry wt	0.02	<0.02					
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.01	0.03					
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.01					
Anthracene-d10 (Surrogate)	%	1	100.0					

Moisture Content

Clier	Client Sample ID		HABH3 S0.5 0.5	HA11 S0.1 0.1	HA11 S0.5 0.5	HA5 S0.1 0.1
Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte Unit	Reporting Limit	18-39303-1	18-39303-2	18-39303-4	18-39303-5	18-39303-7
Moisture Content %	1	19	25	26	22	27

Moisture Content

Clier	Client Sample ID		HA6 S0.1 0.1	HA6 S0.5 0.5	HBH4 S0.1 0.1	HBH4 S0.5 0.5
Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018
Analyte Unit	Reporting Limit	18-39303-8	18-39303-10	18-39303-11	18-39303-13	18-39303-14
Moisture Content %	1	25	31	22	24	18

Moisture Content

Client Sample ID		HA12 S0.1 0.1	HA12 S0.5 0.5	FT1 S0.1 0.1	FT1 S0.3 0.3	HA15 S0.1 0.1	
Date Sampled		20/12/2018	20/12/2018	20/12/2018	20/12/2018	20/12/2018	
Analyte	Unit	Reporting Limit	18-39303-15	18-39303-16	18-39303-19	18-39303-20	18-39303-23
Moisture Content	%	1	30	24	38	26	25

Moisture Content

Client Sample ID		HA15 S0.5 0.5	HA19 S0.1 0.1	HA19 S0.5 0.5	HA17 S0.1 0.1	HA17 S0.5 0.5	
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018	
Analyte U	nit R	Reporting Limit	18-39303-24	18-39303-25	18-39303-26	18-39303-27	18-39303-28
Moisture Content	%	1	23	23	22	21	27

Moisture Content

Client Sample ID		HA18 S0.1 0.1	HA18 S0.5 0.5	HA21 S0.1 0.1	HA24 S0.1 0.1	HA21 S0.5 0.5
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte Unit	Reporting Limit	18-39303-29	18-39303-30	18-39303-32	18-39303-33	18-39303-34
Moisture Content %	1	25	20	26	31	16

Moisture Content

(Client Sample ID		HA22 S0.1 0.1	HA22 S0.5 0.5	HA16 S0.1 0.1	HA16 S0.5 0.5	HA20 S0.1 0.1
Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018	21/12/2018	
Analyte l	Unit	Reporting Limit	18-39303-35	18-39303-36	18-39303-37	18-39303-38	18-39303-39
Moisture Content	%	1	24	16	24	21	24

Moisture Content

Client Sample ID		HA20 S0.5 0.5	HBH5 S0.1 0.1	HBH5 S0.5 0.5	HA23 S0.1 0.1	HA23 S0.5 0.5
	Date Sampled		21/12/2018	21/12/2018	21/12/2018	21/12/2018
Analyte Ur	t Reporting Limit	18-39303-40	18-39303-41	18-39303-42	18-39303-43	18-39303-44
Moisture Content	6 1	20	25	19	26	29

Moisture Content

	Client	HA24 S0.5 0.5	
	Da	te Sampled	21/12/2018
Analyte	Unit	Reporting Limit	18-39303-45
Moisture Content	%	1	23

Total Petroleum Hydrocarbons - Soil

	Client	FT1 S0.1 0.1	FT1 S0.3 0.3	
	Da	20/12/2018	20/12/2018	
Analyte	Unit	Reporting Limit	18-39303-19	18-39303-20
C7-C9	mg/kg dry wt	10	<10	<10
C10-C14	mg/kg dry wt	15	<15	<15
C15-C36	mg/kg dry wt	25	149	<25
C7-C36 (Total)	mg/kg dry wt	50	149	<50

BTEX in Soil

	Client	t Sample ID	FT1 S0.1 0.1	FT1 S0.3 0.3
	Da	te Sampled	20/12/2018	20/12/2018
Analyte	Unit	Reporting Limit	18-39303-19	18-39303-20
Benzene	mg/kg dry wt	0.05	<0.05	<0.05
Ethylbenzene	mg/kg dry wt	0.05	<0.05	<0.05
Toluene	mg/kg dry wt	0.05	0.08	<0.05
m,p-xylene	mg/kg dry wt	0.05	<0.05	<0.05
o-xylene	mg/kg dry wt	0.05	<0.05	<0.05
Benzene-d6 (Surrogate)	%	1	101.5	104.1

Method Summary

Elements in Soil Acid digestion followed by ICP-MS analysis. (US EPA method 200.8).

OCP in Soil	Samples are extracted with hexane, pre-concetrated then analysed by GC-MSMS.(In-house procedure). (Chlordane (sum) is calculated from the main actives in technical Chlordane: Chlordane, Nonachlor and Heptachlor)
Total DDT	Sum of DDT, DDD and DDE (4,4' and 2,4 isomers)
PAH in Soil	Solvent extraction, silica cleanup, followed by GC-MS analysis. Benzo[a]pyrene TEQ (LOR) : The most conservative TEQ estimate, where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. Benzo[a]pyrene TEQ (Zero) : The least conservative TEQ estimate, PAHs reported as less than the limit of reporting (LOR) are not included in the TEQ calculation. Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Environment. 2011.
Moisture	Moisture content is determined gravimetrically by drying at 103 °C.

TPH in Soil Solvent extraction, silica cleanup, followed by GC-FID analysis. (C7-C36)

BTEX in Soil Solvent extraction, followed by Headspace GC-MS analysis. US EPA method 5021A.

Franto

tatont

Sharelle Frank, B.Sc. (Tech) Technologist

Tom Featonby, M.Sc. Technologist

APPENDIX G

Drawing

NGIORA) LIMITED
ITH BELT, RANGIORA
GIORA

ADFILE			
70743-2			
SCALE (A3)	ORIG.	SHEET	SIZE
:2000	A3		
RAWING No.	REV.		
70743-2	2		