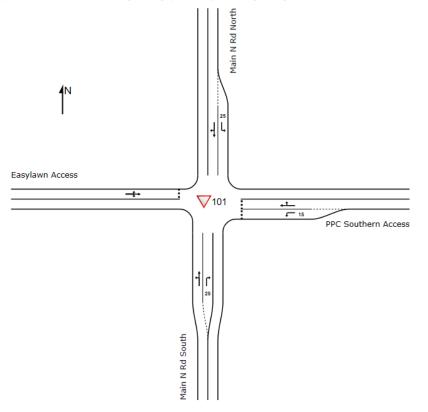

Location	Scenario
Main North Road / Northern Site Access	Future development

SITE LAYOUT

▽ Site: 101 [PPC Northern Access Dev AM (Site Folder: Addn Turn Lanes)]

New Site Site Category: (None) Give-Way (Two-Way)

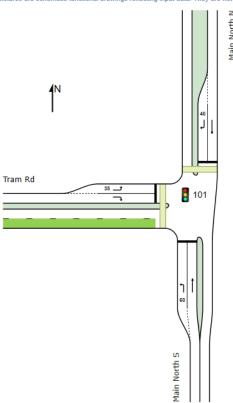


Location	Scenario
Main North Road / Southern Site Access	Future development

SITE LAYOUT

igtriangledown Site: 101 [PPC Southern Access Dev AM (Site Folder: Addn Turn Lanes)]

New Site Site Category: (None) Give-Way (Two-Way)

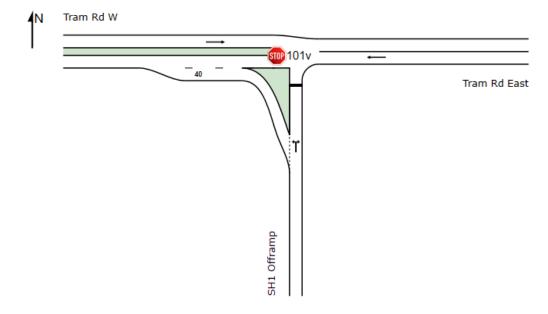


Location	Scenario
Main North Road / Tram Road	All scenarios

SITE LAYOUT

Site: 101 [Tram Rd - Main North Rd Baseline AM (Site Folder: Baseline - SCATS Timings)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated



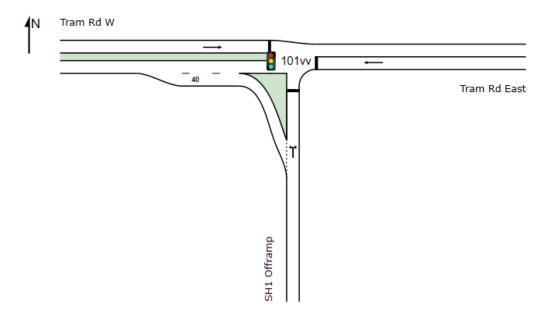
Location	Scenario
SH1 off ramp / Tram Road	Baseline

SITE LAYOUT

Site: 101v [Tram Rd Offramp Baseline AM (Site Folder: Baseline Ramps)]

New Site Site Category: (None) Stop (Two-Way)

Location	Scenario
SH1 off ramp / Tram Road	Future baseline, Future development


SITE LAYOUT

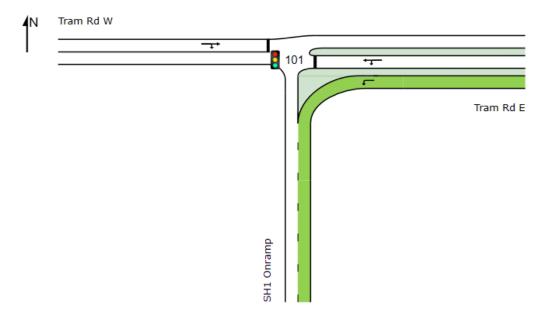
Site: 101vv [Tram Rd Offramp Signalised AM (Site Folder: Signalise Offramp RT)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Location	Scenario
SH1 on ramp / Tram Road	All scenarios


SITE LAYOUT

Site: 101 [Tram Rd Onramp Baseline AM (Site Folder: Baseline Ramps)]

New Site Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Created: Monday, 22 January 2024 12:38:43 p.m.

Project: J:Wilke Greer Homes NZ (MGHNZ)IMGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\text{Models\Tram Rd Ramps Sidra Modelling.sip\text{9}}

Location	Scenario	Peak
Main North Road / Northern Site Access	Future development	AM

MOVEMENT SUMMARY

∇ Site: 101 [PPC Northern Access Dev AM - Future (Site Folder: Addn Turn Bays - Future (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Deman [Total	d Flows HV]	Arriva [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% [Veh.	6 Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Main N I	South: Main N Rd South														
2	T1	All MCs	312	8.2	312	8.2	0.169	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
3	R2	All MCs	2	4.0	2	4.0	0.003	8.9	LOS A	0.0	0.1	0.58	0.63	0.58	36.7
Approach			314	8.2	314	8.2	0.169	0.1	NA	0.0	0.1	0.00	0.00	0.00	49.8
East: PPC Nort	hern Access														
4	L2	All MCs	27	4.0	27	4.0	0.061	9.6	LOS A	0.2	1.4	0.63	0.80	0.63	35.9
6	R2	All MCs	16	4.0	16	4.0	0.143	35.9	LOS E	0.4	3.0	0.88	0.94	0.88	30.4
Approach			43	4.0	43	4.0	0.143	19.2	LOS C	0.4	3.0	0.72	0.85	0.72	33.2
North: Main N F	Rd North														
7	L2	All MCs	9	4.0	9	4.0	0.005	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	45.9
8	T1	All MCs	662	8.2	662	8.2	0.358	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	49.8
Approach			671	8.1	671	8.1	0.358	0.2	NA	0.0	0.0	0.00	0.01	0.00	49.7
All Vehicles			1028	8.0	1028	8.0	0.358	1.0	NA	0.4	3.0	0.03	0.04	0.03	48.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright @ 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / IPC | Processed: Monday, 15 January 2024 1:06:18 p.m.
Project: J:Wike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road KaiapoilModels\()PPC Sidra Modelling.sip9

Location	Scenario	Peak
Main North Road / Northern Site Access	Future development	PM

MOVEMENT SUMMARY

∇ Site: 101 [PPC Northern Access Dev PM - Future (Site Folder: Addn Turn Bays - Future (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movem	nent Perf	ormance													
Mov ID	Turn	Mov Class	Demar [Total	nd Flows HV]	Arriv: [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95 [Veh.	% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			<u> </u>	km/h
South: Main N Ro	d South														
2	T1	All MCs	581	8.2	581	8.2	0.314	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	49.8
3	R2	All MCs	24	4.0	24	4.0	0.027	6.7	LOS A	0.1	0.7	0.46	0.62	0.46	37.8
Approach			605	8.0	605	8.0	0.314	0.3	NA	0.1	0.7	0.02	0.02	0.02	49.2
East: PPC Northe	ern Access	S													
4	L2	All MCs	3	4.0	3	4.0	0.004	5.9	LOS A	0.0	0.1	0.45	0.53	0.45	37.8
6	R2	All MCs	13	4.0	13	4.0	0.125	36.1	LOSE	0.4	2.6	0.88	0.94	0.88	30.3
Approach			16	4.0	16	4.0	0.125	31.2	LOS D	0.4	2.6	0.81	0.87	0.81	31.1
North: Main N Rd	l North														
7	L2	All MCs	14	4.0	14	4.0	0.008	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	45.9
8	T1	All MCs	399	8.2	399	8.2	0.216	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	49.9
Approach			413	8.1	413	8.1	0.216	0.2	NA	0.0	0.0	0.00	0.02	0.00	49.7
All Vehicles			1034	8.0	1034	8.0	0.314	0.8	NA	0.4	2.6	0.02	0.03	0.02	48.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Monday, 15 January 2024 1:06:22 p.m.
Project: J:IMike Greer Homes NZ (MGHNZ)IMGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road KaiapoilModels/PPC Sidra Modelling.sip9

Location	Scenario	Peak
Main North Road / Southern Site Access	Future development	AM

MOVEMENT SUMMARY

V Site: 101 [PPC Southern Access Dev AM - Future (Site Folder: Addn Turn Bays - Future (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Mo	vement Perf	formance													
Mov ID	Turn	Mov Class	Demai [Total	nd Flows HV]	Arriva [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Bac [Veh.	k Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			1	km/h
South: Main	N Rd South														
1	L2	All MCs	1	8.2	1	8.2	0.150	4.7	LOS A	0.0	0.0	0.00	0.00	0.00	48.6
2	T1	All MCs	277	8.2	277	8.2	0.150	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	49.9
3	R2	All MCs	4	4.0	4	4.0	0.007	9.1	LOS A	0.0	0.2	0.59	0.68	0.59	39.5
Approach			283	8.1	283	8.1	0.150	0.2	NA	0.0	0.2	0.01	0.01	0.01	49.6
East: PPC S	outhern Acces	S													
4	L2	All MCs	64	4.0	64	4.0	0.146	10.1	LOS B	0.5	3.5	0.66	0.81	0.66	38.7
5	T1	All MCs	1	4.0	1	4.0	0.328	32.4	LOS D	1.1	7.7	0.90	1.00	1.06	24.8
6	R2	All MCs	37	4.0	37	4.0	0.328	40.8	LOSE	1.1	7.7	0.90	1.00	1.06	25.2
Approach			101	4.0	101	4.0	0.328	21.4	LOS C	1.1	7.7	0.75	0.88	0.81	33.3
North: Main	N Rd North														
7	L2	All MCs	21	4.0	21	4.0	0.012	4.6	LOS A	0.0	0.0	0.00	0.53	0.00	44.5
8	T1	All MCs	669	8.2	669	8.2	0.363	0.0	LOS A	0.0	0.1	0.00	0.00	0.00	50.0
9	R2	All MCs	1	8.2	1	8.2	0.363	4.9	LOSA	0.0	0.1	0.00	0.00	0.00	34.0
Approach			691	8.1	691	8.1	0.363	0.1	NA	0.0	0.1	0.00	0.02	0.00	49.8
West: Easyla	wn Access														
10	L2	All MCs	1	8.2	1	8.2	0.022	3.6	LOS A	0.1	0.5	0.75	0.71	0.75	25.8
11	T1	All MCs	1	4.0	1	4.0	0.022	24.4	LOS C	0.1	0.5	0.75	0.71	0.75	28.1
12	R2	All MCs	1	8.2	1	8.2	0.022	39.8	LOSE	0.1	0.5	0.75	0.71	0.75	29.8
Approach			3	6.8	3	6.8	0.022	22.6	LOS C	0.1	0.5	0.75	0.71	0.75	28.0
All Vehicles			1078	7.7	1078	7.7	0.363	2.2	NA	1.1	7.7	0.08	0.10	0.08	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Monday, 15 January 2024 1:08:16 p.m.

Project: J:Mike Greer Homes NZ (MGHNZ) MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi

Location	Scenario	Peak
Main North Road / Southern Site Access	Future development	PM

MOVEMENT SUMMARY

V Site: 101 [PPC Southern Access Dev PM - Future (Site Folder: Addn Turn Bays - Future (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Site

Site Category: (None) Give-Way (Two-Way)

Vehicle Mov	ement Perf	ormance													
Mov	Turn	Mov		and Flows		al Flows	Deg.	Aver.	Level of		Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh				Cycles	km/h
South: Main N	Rd South														
1	L2	All MCs	1	8.2	1	8.2	0.311	4.7	LOS A	0.0	0.0	0.00	0.00	0.00	48.5
2	T1	All MCs	574	8.2	574	8.2	0.311	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	49.8
3	R2	All MCs	56	4.0	56	4.0	0.062	6.7	LOS A	0.2	1.7	0.46	0.64	0.46	40.6
Approach			631	7.8	631	7.8	0.311	0.7	NA	0.2	1.7	0.04	0.06	0.04	48.5
East: PPC So	uthern Acces	s													
4	L2	All MCs	6	4.0	6	4.0	0.008	5.6	LOSA	0.0	0.2	0.43	0.54	0.43	40.6
5	T1	All MCs	1	4.0	1	4.0	0.299	33.2	LOS D	0.9	6.9	0.90	1.00	1.04	24.6
6	R2	All MCs	31	4.0	31	4.0	0.299	42.0	LOSE	0.9	6.9	0.90	1.00	1.04	24.9
Approach			39	4.0	39	4.0	0.299	36.0	LOSE	0.9	6.9	0.83	0.92	0.94	27.1
North: Main N	Rd North														
7	L2	All MCs	32	4.0	32	4.0	0.018	4.6	LOSA	0.0	0.0	0.00	0.53	0.00	44.5
8	T1	All MCs	370	8.2	370	8.2	0.202	0.0	LOS A	0.0	0.2	0.01	0.00	0.01	50.0
9	R2	All MCs	1	8.2	1	8.2	0.202	8.2	LOSA	0.0	0.2	0.01	0.00	0.01	34.0
Approach			403	7.9	403	7.9	0.202	0.4	NA	0.0	0.2	0.01	0.05	0.01	49.4
West: Easylav	vn Access														
10	L2	All MCs	1	8.2	1	8.2	0.023	6.7	LOSA	0.1	0.5	0.82	0.85	0.82	25.7
11	T1	All MCs	1	4.0	1	4.0	0.023	26.4	LOS D	0.1	0.5	0.82	0.85	0.82	28.0
12	R2	All MCs	1	8.2	1	8.2	0.023	36.6	LOS E	0.1	0.5	0.82	0.85	0.82	29.7
Approach			3	6.8	3	6.8	0.023	23.2	LOS C	0.1	0.5	0.82	0.85	0.82	27.9
All Vehicles			1076	7.7	1076	7.7	0.311	1.9	NA	0.9	6.9	0.06	0.09	0.06	47.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Monday, 15 January 2024 1:08:20 p.m.
Project: J:Milke Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kalapoi Models PPC Sidra Modelling.sip9

Location	Scenario	Peak
Main North Road / Tram Road	Baseline	AM

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd Baseline AM (Site Folder: Baseline - SCATS Timings)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Baseline AM - SCATS (Network Folder: Baseline)]

New Site

Site Category: (None)

vement	Performance													
Turn	Mov Class	Demand [Total	Flows HV]	Arriva [Total	I Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Bac [Veh.	k Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of	Aver Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			Cycles	km/h
North S														
L2	All MCs	94	17.6	94	17.6	0.120	12.2	LOS B	1.1	8.5	0.58	0.70	0.58	43.2
T1	All MCs	151	0.0	151	0.0	* 0.309	13.8	LOS B	2.5	17.6	0.85	0.68	0.85	48.9
		245	6.8	245	6.8	0.309	13.2	LOS B	2.5	17.6	0.75	0.69	0.75	47.4
North N														
T1	All MCs	284	0.0	284	0.0	0.224	3.1	LOSA	2.3	16.0	0.43	0.37	0.43	57.1
R2	All MCs	162	17.6	162	17.6	* 0.303	17.2	LOS B	2.5	20.1	0.79	0.76	0.79	38.8
		446	6.4	446	6.4	0.303	8.2	LOSA	2.5	20.1	0.56	0.51	0.56	51.6
Rd														
L2	All MCs	56	13.1	56	13.1	0.053	8.8	LOSA	0.4	3.3	0.41	0.65	0.41	46.4
R2	All MCs	104	13.2	104	13.2	* 0.408	23.9	LOSC	2.0	15.7	0.95	0.77	0.95	36.3
		160	13.2	160	13.2	0.408	18.6	LOSB	2.0	15.7	0.76	0.73	0.76	39.3
		851	7.8	851	7.8	0.408	11.6	LOS B	2.5	20.1	0.65	0.60	0.65	48.0
	North S L2 T1 North N T1 R2	North S L2 All MCs T1 All MCs North N T1 All MCs R2 All MCs Rd L2 All MCs	Turn Mov Class [Total veh/h North S L2 All MCs 94 T1 All MCs 151 245 North N T1 All MCs 284 R2 All MCs 162 446 Rd L2 All MCs 56 R2 All MCs 104 160	Turn Mov Class [Total HV] veh/h % North S L2 All MCs 94 17.6 T1 All MCs 151 0.0 245 6.8 North N T1 All MCs 284 0.0 R2 All MCs 162 17.6 446 6.4 Rd L2 All MCs 56 13.1 R2 All MCs 104 13.2 160 13.2	Turn Mov Class [Total HV] Arriva (Total HV) Total Veh/h % Veh/h % Veh/h North S L2 All MCs 94 17.6 94 T1 All MCs 151 0.0 151 245 6.8 245 North N T1 All MCs 284 0.0 284 R2 All MCs 162 17.6 162 446 6.4 446 Rd L2 All MCs 56 13.1 56 R2 All MCs 104 13.2 104 160 13.2 160	Turn Mov Class [Total HV] Arrival Flows [Total HV] veh/h % veh/h % North S L2 All MCs 94 17.6 94 17.6 T1 All MCs 151 0.0 151 0.0 245 6.8 245 6.8 North N T1 All MCs 284 0.0 284 0.0 R2 All MCs 162 17.6 162 17.6 446 6.4 446 6.4 Rd L2 All MCs 56 13.1 56 13.1 R2 All MCs 104 13.2 104 13.2 160 13.2 160 13.2	Turn Mov Class [Total HV]	Turn Mov Class [Total HV] Entra Flows Arrival Flows Satn Deg. Aver. Delay Veh/h % Veh/h % V/C Sec North S L2 All MCs 94 17.6 94 17.6 0.120 12.2 T1 All MCs 151 0.0 151 0.0 *0.309 13.8 245 6.8 245 6.8 0.309 13.2 North N T1 All MCs 284 0.0 284 0.0 0.224 3.1 R2 All MCs 162 17.6 162 17.6 *0.303 17.2 446 6.4 446 6.4 0.303 8.2 Rd L2 All MCs 56 13.1 56 13.1 0.053 8.8 R2 All MCs 104 13.2 104 13.2 *0.408 23.9 160 13.2 160 13.2 0.408 18.6	Turn Mov Class Total HV Total HV Satn Deg. Aver. Level of Service	Turn Mov Class Total HV Total HV Satn Deg. Aver. Level of Service Service Veh.	Turn Mov Class Total HV Total HV Satin Deg. Aver. Level of Service Service Veh. Dist	Tum Mov Class Total HV Total HV Satn Deg. Aver. Level of Service Service Service Total HV Dist Que	Turn Mov Class Demand Flows Class Total HV Total HV Total HV Sain Deg. Aver. Delay Service Service Service Service Level of Service Service Service Prop. Class Stop Rate	Turn Mov Class Demand Flows Arrival Flows Deg. Satn Delay Service Service Service Prop. Clue Stop Rate No. of Cycles

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak				
Main North Road / Tram Road	Future baseline	AM				

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd Future 10% AM (Site Folder: Future Baseline (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline AM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 40 seconds (Site User-Given Phase Times)

Vehicle M	lovement	Performance													
Mov ID	Turn	Mov Class	Demand [Total	f Flows HV]	Arriva [Total	I Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Baci [Veh.	k Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Ojulus	km/h
South: Mair	n North S														
1	L2	All MCs	104	17.6	104	17.6	0.133	12.2	LOS B	1.2	9.4	0.59	0.70	0.59	43.2
2	T1	All MCs	166	0.0	166	0.0	* 0.340	13.9	LOS B	2.8	19.6	0.86	0.69	0.86	48.9
Approach			270	6.8	270	6.8	0.340	13.3	LOS B	2.8	19.6	0.76	0.70	0.76	47.4
North: Mair	North N														
8	T1	All MCs	312	0.0	312	0.0	0.246	3.2	LOSA	2.6	18.0	0.44	0.38	0.44	57.0
9	R2	All MCs	179	17.6	179	17.6	* 0.333	17.3	LOS B	2.8	22.3	0.80	0.77	0.80	38.7
Approach			491	6.4	491	6.4	0.333	8.3	LOSA	2.8	22.3	0.57	0.52	0.57	51.5
West: Tram	Rd Rd														
10	L2	All MCs	62	13.1	62	13.1	0.058	8.9	LOSA	0.5	3.7	0.41	0.66	0.41	46.4
12	R2	All MCs	114	13.2	114	13.2	* 0.449	24.0	LOSC	2.2	17.4	0.95	0.77	0.95	36.3
Approach			176	13.2	176	13.2	0.449	18.7	LOSB	2.2	17.4	0.76	0.73	0.76	39.3
All Vehicles	3		936	7.8	936	7.8	0.449	11.7	LOS B	2.8	22.3	0.66	0.61	0.66	47.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak
Main North Road / Tram Road	Future development	AM

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd with PPC 10% AM (Site Folder: Future with PPC (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

Network: N101 [Future with PPC AM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Vehicle N	Movement	Performance													
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arriva [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Oyulo3	km/h
South: Ma	in North S														
1	L2	All MCs	104	17.6	104	17.6	0.133	12.2	LOS B	1.2	9.4	0.59	0.70	0.59	43.2
2	T1	All MCs	166	0.0	166	0.0	* 0.340	13.9	LOS B	2.8	19.6	0.86	0.69	0.86	48.9
Approach			270	6.8	270	6.8	0.340	13.3	LOS B	2.8	19.6	0.76	0.70	0.76	47.4
North: Mai	in North N														
8	T1	All MCs	314	0.0	314	0.0	0.248	3.2	LOSA	2.6	18.1	0.44	0.38	0.44	57.0
9	R2	All MCs	267	11.8	267	11.8	* 0.480	17.9	LOSB	4.4	33.9	0.85	0.79	0.85	38.1
Approach			582	5.4	582	5.4	0.480	10.0	LOSA	4.4	33.9	0.63	0.57	0.63	49.6
West: Tran	n Rd														
10	L2	All MCs	68	12.0	68	12.0	0.063	8.9	LOSA	0.5	4.0	0.41	0.66	0.41	46.4
12	R2	All MCs	114	13.2	114	13.2	* 0.449	24.0	LOSC	2.2	17.4	0.95	0.77	0.95	36.3
Approach			182	12.7	182	12.7	0.449	18.4	LOS B	2.2	17.4	0.75	0.73	0.75	39.5
All Vehicle	s		1033	7.1	1033	7.1	0.480	12.3	LOS B	4.4	33.9	0.68	0.63	0.68	47.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak
Main North Road / Tram Road	Baseline	PM

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd Baseline PM (Site Folder: Baseline - SCATS Timings)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

Network: N101 [Baseline PM - SCATS (Network Folder: Baseline)]

New Site

Site Category: (None)

Vehicle Mo	ovement	Performance													
Mov ID	Tum	Mov Class	Demand [Total	Flows HV]	Arriva [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Cycles	km/h
South: Main	North S														
1	L2	All MCs	140	2.4	140	2.4	0.115	8.5	LOSA	1.1	7.9	0.38	0.67	0.38	47.1
2	T1	All MCs	401	0.0	401	0.0	* 0.514	11.3	LOS B	6.9	48.0	0.80	0.69	0.80	50.6
Approach			541	0.6	541	0.6	0.514	10.6	LOS B	6.9	48.0	0.69	0.68	0.69	50.1
North: Main	North N														
8	T1	All MCs	190	0.0	190	0.0	0.146	3.0	LOSA	1.5	10.8	0.39	0.32	0.39	57.2
9	R2	All MCs	81	2.3	81	2.3	* 0.333	26.2	LOSC	1.8	12.5	0.95	0.75	0.95	32.5
Approach			271	0.7	271	0.7	0.333	9.9	LOSA	1.8	12.5	0.56	0.45	0.56	50.4
West: Tram	Rd														
10	L2	All MCs	155	3.7	155	3.7	0.214	15.4	LOS B	2.3	16.5	0.69	0.74	0.69	41.6
12	R2	All MCs	73	3.7	73	3.7	* 0.304	26.2	LOSC	1.6	11.4	0.94	0.75	0.94	35.4
Approach			228	3.7	228	3.7	0.304	18.8	LOS B	2.3	16.5	0.77	0.74	0.77	39.4
All Vehicles			1041	1.3	1041	1.3	0.514	12.2	LOS B	6.9	48.0	0.68	0.64	0.68	47.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak
Main North Road / Tram Road	Future baseline	PM

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd Future 10% PM (Site Folder: Future Baseline (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline PM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Vehicle Mo	vement	Performance													
Mov ID	Turn	Mov Class	Demand [Total	Flows HV]	Arriva [Total	I Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			Cycles .	km/h
South: Main	North S														
1	L2	All MCs	154	2.4	154	2.4	0.126	8.5	LOSA	1.2	8.8	0.38	0.67	0.38	47.1
2	T1	All MCs	441	0.0	441	0.0	* 0.566	11.6	LOS B	7.8	54.3	0.83	0.71	0.83	50.4
Approach			595	0.6	595	0.6	0.566	10.8	LOS B	7.8	54.3	0.71	0.70	0.71	49.9
North: Main	North N														
8	T1	All MCs	209	0.0	209	0.0	0.161	3.0	LOSA	1.7	12.0	0.40	0.33	0.40	57.2
9	R2	All MCs	89	2.4	89	2.4	* 0.367	26.4	LOSC	1.9	13.9	0.95	0.76	0.95	32.4
Approach			298	0.7	298	0.7	0.367	10.0	LOS B	1.9	13.9	0.56	0.46	0.56	50.3
West: Tram	Rd														
10	L2	All MCs	171	3.6	171	3.6	0.236	15.5	LOS B	2.5	18.4	0.70	0.74	0.70	41.6
12	R2	All MCs	81	3.8	81	3.8	* 0.335	26.3	LOSC	1.7	12.6	0.95	0.75	0.95	35.3
Approach			251	3.7	251	3.7	0.335	18.9	LOS B	2.5	18.4	0.78	0.75	0.78	39.3
All Vehicles			1145	1.3	1145	1.3	0.566	12.4	LOS B	7.8	54.3	0.69	0.65	0.69	47.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak
Main North Road / Tram Road	Future development	РМ

MOVEMENT SUMMARY

Site: 101 [Tram Rd - Main North Rd with PPC 10% PM (Site Folder: Future with PPC (+10%))]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future with PPC PM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Vehicle N	Movement I	Performance													
Mov ID	Tum	Mov Class	Demand [Total	Flows HV]	Arriva [Total	Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	k Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			0,000	km/h
South: Ma	in North S														
1	L2	All MCs	154	2.4	154	2.4	0.126	8.5	LOSA	1.2	8.8	0.38	0.67	0.38	47.1
2	T1	All MCs	443	0.0	443	0.0	* 0.568	11.6	LOS B	7.8	54.6	0.83	0.71	0.83	50.4
Approach			597	0.6	597	0.6	0.568	10.8	LOS B	7.8	54.6	0.71	0.70	0.71	49.9
North: Mai	in North N														
8	T1	All MCs	209	0.0	209	0.0	0.161	3.0	LOSA	1.7	12.0	0.40	0.33	0.40	57.2
9	R2	All MCs	98	2.1	98	2.1	* 0.403	26.5	LOSC	2.1	15.3	0.96	0.76	0.96	32.4
Approach			307	0.7	307	0.7	0.403	10.5	LOS B	2.1	15.3	0.57	0.47	0.57	49.8
West: Tran	m Rd														
10	L2	All MCs	248	2.5	248	2.5	0.340	16.0	LOS B	3.9	27.9	0.74	0.77	0.74	41.2
12	R2	All MCs	81	3.8	81	3.8	* 0.335	26.3	LOSC	1.7	12.6	0.95	0.75	0.95	35.3
Approach			329	2.8	329	2.8	0.340	18.5	LOS B	3.9	27.9	0.79	0.76	0.79	39.6
All Vehicle	s		1233	1.2	1233	1.2	0.568	12.8	LOSB	7.8	54.6	0.70	0.66	0.70	47.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Location	Scenario	Peak
SH1 offramp / Tram Road	Baseline	AM

MOVEMENT SUMMARY

p Site: 101v [Tram Rd Offramp Baseline AM (Site Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Baseline Ramps AM (Network Folder: Baseline Ramps)]

New Site Site Category: (None) Stop (Two-Way)

Vehicle Movem	ent Perfo	rmance													
Mov	Turn	Mov		mand Flows		val Flows	Deg.	Aver.	Level of		5% Back Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Tota	I HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of	Speed
			veh/l	· %	veh/h		v/c	sec		veh				Cycles	km/h
South: SH1 Offra	mp														
1	L2	All MCs	180	8.8	180	8.8	0.103	5.7	LOSA	0.0	0.0	0.00	0.52	0.00	51.7
3	R2	All MCs	67	3.1	67	3.1	0.440	21.1	LOS C	0.8	5.8	0.86	1.05	1.04	29.0
Approach			247	7.2	247	7.2	0.440	9.9	LOSA	0.8	5.8	0.23	0.67	0.28	47.2
East: Tram Rd Ea	ast														
5	T1	All MCs	73	11.6	73	11.6	0.040	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Approach			73	11.6	73	11.6	0.040	0.0	NA	0.0	0.0	0.00	0.00	0.00	60.0
West: Tram Rd W	/														
11	T1	All MCs	964	5.2	964	5.2	0.511	0.2	LOSA	4.8	35.1	0.00	0.00	0.00	59.6
Approach			964	5.2	964	5.2	0.511	0.2	NA	4.8	35.1	0.00	0.00	0.00	59.6
All Vehicles			1284	6.0	1284	6.0	0.511	2.1	NA	4.8	35.1	0.05	0.13	0.05	56.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS 1 PC | Processed: Wednesday, 24 January 2024 10:12:48 a.m.
Project: J:Mike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi/Modelsi/Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 offramp / Tram Road	Future baseline	AM

MOVEMENT SUMMARY

Site: 101vv [Tram Rd Offramp Future Base AM (Site Folder: Signalise Offramp RT - Future Baseline 10%)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline AM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	nent Perfo	rmance														
Mov ID	Turn	Mov Class		Demand otal	Flows HV]	Arriv [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95 [Veh.	5% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			ve	h/h	%	veh/h	%	v/c	sec		veh	m			0,000	km/h
South: SH1 Offrai	mp															
1	L2	All MCs	1	98	8.8	198	8.8	0.246	5.7	LOS A	4.8	35.9	0.46	0.69	0.46	45.9
3	R2	All MCs		74	3.1	74	3.1	* 0.246	32.0	LOS C	4.8	35.9	0.46	0.69	0.46	36.1
Approach			2	272	7.2	272	7.2	0.246	12.9	LOS B	4.8	35.9	0.46	0.69	0.46	44.4
East: Tram Rd Ea	ast															
5	T1	All MCs		80	11.6	80	11.6	0.056	0.2	LOSA	0.1	0.5	0.02	0.02	0.02	59.7
Approach				80	11.6	80	11.6	0.056	0.2	LOS A	0.1	0.5	0.02	0.02	0.02	59.7
West: Tram Rd W	V															
11	T1	All MCs	10	61	5.2	1061	5.2	* 0.714	4.6	LOS A	21.0	153.9	0.53	0.48	0.53	52.1
Approach			10	61	5.2	1061	5.2	0.714	4.6	LOS A	21.0	153.9	0.53	0.48	0.53	52.1
All Vehicles			14	13	6.0	1413	6.0	0.714	6.0	LOS A	21.0	153.9	0.49	0.50	0.49	50.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:38:47 p.m.

Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 offramp / Tram Road	Future development	AM

MOVEMENT SUMMARY

Site: 101vv [Tram Rd Offramp Future with PPC AM (Site Folder: Signalise Offramp RT - Future with PPC)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future with PPC AM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	nent Perfo	rmance													
Mov ID	Turn	Mov Class	D [Tot	emand Flow al HV		rrival Flows HV]	Deg. Satn	Aver. Delay	Level of Service	9: [Veh.	5% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh.	h 9	6 veh/h	%	v/c	sec		veh	m			Cycles	km/h
South: SH1 Offra	amp														
1	L2	All MCs	19	8 8.	8 198	8.8	0.268	5.7	LOSA	5.7	42.0	0.51	0.71	0.51	44.5
3	R2	All MCs	7	5 3.	1 75	3.1	* 0.268	39.1	LOS D	5.7	42.0	0.51	0.71	0.51	34.0
Approach			27	3 7.	2 273	7.2	0.268	14.9	LOS B	5.7	42.0	0.51	0.71	0.51	42.8
East: Tram Rd Ea	ast														
5	T1	All MCs	8	4 11.	1 84	11.1	0.057	0.2	LOS A	0.1	0.6	0.02	0.02	0.02	59.7
Approach			8	4 11.	1 84	11.1	0.057	0.2	LOS A	0.1	0.6	0.02	0.02	0.02	59.7
West: Tram Rd V	٧														
11	T1	All MCs	106	6 5.	2 1066	5.2	* 0.740	4.7	LOS A	22.7	165.9	0.53	0.49	0.53	52.0
Approach			106	6 5.	2 1066	5.2	0.740	4.7	LOS A	22.7	165.9	0.53	0.49	0.53	52.0
All Vehicles			142	2 5.	9 1422	5.9	0.740	6.4	LOSA	22.7	165.9	0.50	0.50	0.50	49.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:40:52 p.m.
Project: J:Mike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road KaiapoilModels\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak				
SH1 offramp / Tram Road	Baseline	PM				

MOVEMENT SUMMARY

Site: 101v [Tram Rd Offramp Baseline PM (Site Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Baseline Ramps PM (Network Folder: Baseline Ramps)]

New Site Site Category: (None) Stop (Two-Way)

Vehicle Movement Performance															
Mov	Turn	Mov		and Flows		al Flows	Deg.	Aver.	Level of		5% Back Of Queue	Prop.	Eff.	Aver.	Aver.
ID		Class	[Total	HV]	[Total	HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: SH1 Offra	ımp														
1	L2	All MCs	775	1.9	775	1.9	0.423	5.8	LOS A	0.0	0.0	0.00	0.53	0.00	51.8
3	R2	All MCs	172	1.8	172	1.8	0.219	10.9	LOS B	0.9	6.5	0.57	0.94	0.57	39.1
Approach			946	1.9	946	1.9	0.423	6.7	LOSA	0.9	6.5	0.10	0.60	0.10	50.6
East: Tram Rd Ea	ast														
5	T1	All MCs	199	3.2	199	3.2	0.104	0.5	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Approach			199	3.2	199	3.2	0.104	0.5	NA	0.0	0.0	0.00	0.00	0.00	60.0
West: Tram Rd W	٧														
11	T1	All MCs	386	2.2	386	2.2	0.201	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Approach			386	2.2	386	2.2	0.201	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicles			1532	2.1	1532	2.1	0.423	4.2	NA	0.9	6.5	0.06	0.37	0.06	53.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright @ 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Wednesday, 24 January 2024 10:12:55 a.m.
Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-\J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 offramp / Tram Road	Future baseline	РМ

MOVEMENT SUMMARY

Site: 101vv [Tram Rd Offramp Future Base PM (Site Folder: Signalise Offramp RT - Future Baseline 10%)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline PM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	nent Perfo	rmance													
Mov ID	Turn	Mov Class	То	emand Flows al HV		rival Flows HV]	Deg. Satn	Aver. Delay	Level of Service	9 [Veh.	5% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			vet	h %	veh/h	%	v/c	sec		veh	m				km/h
South: SH1 Offra	mp														
1	L2	All MCs	8	2 1.9	852	1.9	0.598	5.7	LOSA	2.4	16.9	0.13	0.56	0.13	51.4
3	R2	All MCs	1	9 1.8	3 189	1.8	* 0.598	6.4	LOSA	2.4	16.9	0.13	0.56	0.13	45.4
Approach			10	1 1.9	1041	1.9	0.598	5.8	LOS A	2.4	16.9	0.13	0.56	0.13	50.9
East: Tram Rd Ea	ast														
5	T1	All MCs	2	9 3.2	2 219	3.2	0.327	13.4	LOS B	3.7	26.7	0.88	0.73	0.88	44.4
Approach			2	9 3.2	2 219	3.2	0.327	13.4	LOS B	3.7	26.7	0.88	0.73	0.88	44.4
West: Tram Rd V	٧														
11	T1	All MCs	4	5 2.2	2 425	2.2	* 0.631	12.5	LOS B	7.3	52.4	0.89	0.77	0.91	42.6
Approach			4.	5 2.2	2 425	2.2	0.631	12.5	LOS B	7.3	52.4	0.89	0.77	0.91	42.6
All Vehicles			16	5 2.1	1 1685	2.1	0.631	8.5	LOSA	7.3	52.4	0.42	0.63	0.42	48.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:39:44 p.m.

Project: J:Wike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoil

Location	Scenario	Peak
SH1 offramp / Tram Road	Future development	PM

MOVEMENT SUMMARY

Site: 101vv [Tram Rd Offramp Future with PPC PM (Site Folder: Signalise Offramp RT - Future with PPC)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future with PPC PM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	nent Perfo	rmance														
Mov ID	Turn	Mov Class		Deman Total	nd Flows HV]	Arriva [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Bacl [Veh.	of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			1	veh/h	%	veh/h	%	v/c	sec		veh	m			· ·	km/h
South: SH1 Offra	amp															
1	L2	All MCs		852	1.9	852	1.9	0.641	5.7	LOS A	2.8	20.0	0.14	0.56	0.14	51.3
3	R2	All MCs		263	1.3	263	1.3	* 0.641	6.3	LOS A	2.8	20.0	0.14	0.56	0.14	45.3
Approach				1115	1.8	1115	1.8	0.641	5.9	LOSA	2.8	20.0	0.14	0.56	0.14	50.6
East: Tram Rd Ea	ast															
5	T1	All MCs		227	3.1	227	3.1	0.365	14.4	LOS B	4.0	28.6	0.91	0.75	0.91	43.4
Approach				227	3.1	227	3.1	0.365	14.4	LOS B	4.0	28.6	0.91	0.75	0.91	43.4
West: Tram Rd V	٧															
11	T1	All MCs		428	2.2	428	2.2	* 0.685	14.2	LOS B	8.0	56.8	0.92	0.84	1.01	41.0
Approach				428	2.2	428	2.2	0.685	14.2	LOS B	8.0	56.8	0.92	0.84	1.01	41.0
All Vehicles				1770	2.0	1770	2.0	0.685	9.0	LOSA	8.0	56.8	0.43	0.65	0.45	47.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:41:41 p.m.

Project: J:Wike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road KaiapoilModelsiTram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak				
SH1 onramp / Tram Road	Baseline	AM				

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Baseline AM (Site Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Baseline Ramps AM (Network Folder: Baseline Ramps)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 57 seconds (Site User-Given Phase Times)

Vehicle Movem	ent Perfo	rmance													
Mov ID	Turn	Mov Class	Dem [Total	and Flows HV]	Arriv [Total	ral Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95 [Veh.	5% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East: Tram Rd E															
4	L2	All MCs	183	19.0	183	19.0	0.522	8.9	LOS A	2.8	21.7	0.14	0.51	0.14	47.0
5	T1	All MCs	74	14.3	74	14.3	0.522	28.4	LOS C	2.8	21.7	0.99	0.77	1.01	30.5
Approach			257	17.6	257	17.6	0.522	14.5	LOS B	2.8	21.7	0.38	0.58	0.39	43.1
West: Tram Rd W	1														
11	T1	All MCs	160	13.2	160	13.2	* 0.833	6.9	LOS A	20.1	146.9	0.79	0.90	0.90	40.6
12	R2	All MCs	879	3.8	879	3.8	* 0.833	18.9	LOS B	20.1	146.9	0.79	0.90	0.90	45.5
Approach			1039	5.3	1039	5.3	0.833	17.1	LOS B	20.1	146.9	0.79	0.90	0.90	44.7
All Vehicles			1296	7.7	1296	7.7	0.833	16.5	LOS B	20.1	146.9	0.71	0.84	0.80	44.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Wednesday, 24 January 2024 10:12:48 a.m.
Project: J:Mike Greer Homes NZ (MGHNZ)MGHNZ:7002 - Rezoning ITA and expert witness - 144 to 170 Main North Road Kaiapoi

Location	Scenario	Peak
SH1 onramp / Tram Road	Future baseline	AM

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Future Base AM (Site Folder: Signalise Offramp RT - Future Baseline 10%)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline AM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 85 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Mover	nent Perfo	rmance													
Mov ID	Turn	Mov Class	Der [Total	mand Flows HV]	Arriv [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95 [Veh.	5% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			_,	km/h
East: Tram Rd E															
4	L2	All MCs	201	19.0	201	19.0	0.733	11.3	LOS B	4.9	37.4	0.14	0.52	0.17	45.6
5	T1	All MCs	81	14.3	81	14.3	0.733	45.9	LOS D	4.9	37.4	1.00	0.88	1.21	23.7
Approach			283	17.6	283	17.6	0.733	21.2	LOS C	4.9	37.4	0.39	0.63	0.46	39.4
West: Tram Rd \	N														
11	T1	All MCs	176	13.2	176	13.2	* 0.811	0.4	LOSA	9.7	70.7	0.22	0.64	0.22	51.6
12	R2	All MCs	967	3.8	967	3.8	* 0.811	6.7	LOS A	9.7	70.7	0.22	0.64	0.22	59.7
Approach			1143	5.3	1143	5.3	0.811	5.7	LOSA	9.7	70.7	0.22	0.64	0.22	58.3
All Vehicles			1425	7.7	1425	7.7	0.811	8.8	LOSA	9.7	70.7	0.25	0.63	0.27	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS 1 PC | Processed: Tuesday, 23 January 2024 5:38:47 p.m.
Project: J:Mike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi Models Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 onramp / Tram Road	Future development	AM

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Future with PPC AM (Site Folder: Signalise Offramp RT - Future with PPC)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future with PPC AM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 90 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	nent Perfo	rmance													
Mov ID	Turn	Mov Class	De [Tota	mand Flows HV]	Arri [Total	val Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95 [Veh.	i% Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of	Aver. Speed
			veh/	h %	veh/h	%	v/c	sec		veh	m			Cycles	km/h
East: Tram Rd E															
4	L2	All MCs	28	13.3	286	13.3	0.788	12.1	LOS B	6.1	46.1	0.15	0.53	0.19	44.9
5	T1	All MCs	8	5 13.7	85	13.7	0.788	49.2	LOS D	6.1	46.1	1.00	0.92	1.26	22.6
Approach			37	1 13.4	371	13.4	0.788	20.6	LOSC	6.1	46.1	0.34	0.62	0.43	39.8
West: Tram Rd W	V														
11	T1	All MCs	18	2 12.7	182	12.7	* 0.813	0.2	LOS A	12.3	89.6	0.27	0.65	0.27	51.5
12	R2	All MCs	96	7 3.8	967	3.8	* 0.813	6.9	LOSA	12.3	89.6	0.27	0.65	0.27	59.5
Approach			114	9 5.2	1149	5.2	0.813	5.8	LOSA	12.3	89.6	0.27	0.65	0.27	58.1
All Vehicles			152	7.2	1520	7.2	0.813	9.4	LOSA	12.3	89.6	0.29	0.64	0.31	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright @ 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:40:52 p.m.
Project: J:Mike Greer Homes NZ (MGHNZ)/MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi/Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 onramp / Tram Road	Baseline	PM

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Baseline PM (Site Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Baseline Ramps PM (Network Folder: Baseline Ramps)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 42 seconds (Site User-Given Phase Times)

Vehicle Move	ment Perfo	rmance													
Mov ID	Turn	Mov Class	Dem [Total	and Flows HV]	Arriv [Total	ral Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	c Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			0,000	km/h
East: Tram Rd E															
4	L2	All MCs	95	1.1	95	1.1	0.536	8.6	LOS A	4.3	30.3	0.22	0.54	0.22	47.5
5	T1	All MCs	198	2.1	198	2.1	0.536	16.8	LOS B	4.3	30.3	0.93	0.77	0.93	38.3
Approach			293	1.8	293	1.8	0.536	14.2	LOS B	4.3	30.3	0.70	0.69	0.70	42.3
West: Tram Rd	W														
11	T1	All MCs	228	3.7	228	3.7	* 0.558	1.5	LOS A	6.5	46.6	0.71	0.75	0.71	47.7
12	R2	All MCs	326	1.0	326	1.0	* 0.558	14.7	LOS B	6.5	46.6	0.71	0.75	0.71	55.7
Approach			555	2.1	555	2.1	0.558	9.2	LOSA	6.5	46.6	0.71	0.75	0.71	52.1
All Vehicles			847	2.0	847	2.0	0.558	10.9	LOS B	6.5	46.6	0.71	0.73	0.71	48.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Wednesday, 24 January 2024 10:12:55 a.m.

Project: J:Mike Greer Homes NZ (MGHNZ)MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 onramp / Tram Road	Future baseline	PM

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Future Base PM (Site Folder: Signalise Offramp RT - Future Baseline 10%)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future Baseline PM (Network Folder: Future Baseline)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movem	ent Perfo	rmance													
Mov ID	Turn	Mov Class	Der [Total	mand Flows HV]	Arri [Total	val Flows HV]	Deg. Satn	Aver. Delay	Level of Service	95% Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East: Tram Rd E															
4	L2	All MCs	104	1.1	104	1.1	0.361	7.2	LOS A	3.7	26.0	0.18	0.51	0.18	48.4
5	T1	All MCs	218	2.1	218	2.1	0.361	10.8	LOS B	3.7	26.0	0.79	0.66	0.79	43.8
Approach			322	1.8	322	1.8	0.361	9.7	LOS A	3.7	26.0	0.59	0.61	0.59	45.9
West: Tram Rd W	/														
11	T1	All MCs	251	3.7	251	3.7	* 0.851	2.3	LOS A	7.4	52.6	0.63	0.76	0.73	49.1
12	R2	All MCs	359	1.0	359	1.0	* 0.851	11.9	LOS B	7.4	52.6	0.63	0.76	0.73	57.6
Approach			610	2.1	610	2.1	0.851	7.9	LOS A	7.4	52.6	0.63	0.76	0.73	53.8
All Vehicles			932	2.0	932	2.0	0.851	8.5	LOS A	7.4	52.6	0.62	0.71	0.68	50.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:39:44 p.m.
Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 onramp / Tram Road	Future development	PM

MOVEMENT SUMMARY

Site: 101 [Tram Rd Onramp Future with PPC PM (Site Folder: Signalise Offramp RT - Future with PPC)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

■■ Network: N101 [Future with PPC PM (Network Folder: Future with PPC)]

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Den [Total	nand Flows HV]	Arriv [Total	al Flows HV]	Deg. Satn	Aver. Delay	Level of Service	959 [Veh.	6 Back Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East: Tram Rd E															
4	L2	All MCs	105	1.1	105	1.1	0.401	7.4	LOSA	4.0	28.1	0.19	0.52	0.19	48.3
5	T1	All MCs	225	2.1	225	2.1	0.401	11.8	LOS B	4.0	28.1	0.82	0.69	0.82	42.8
Approach			331	1.7	331	1.7	0.401	10.4	LOS B	4.0	28.1	0.62	0.63	0.62	45.3
West: Tram Rd V	V														
11	T1	All MCs	329	2.8	329	2.8	* 0.875	5.3	LOSA	10.6	75.2	0.73	0.86	0.95	46.1
12	R2	All MCs	359	1.0	359	1.0	* 0.875	15.9	LOS B	10.6	75.2	0.73	0.86	0.95	53.5
Approach			688	1.9	688	1.9	0.875	10.8	LOS B	10.6	75.2	0.73	0.86	0.95	49.7
All Vehicles			1019	1.8	1019	1.8	0.875	10.7	LOS B	10.6	75.2	0.69	0.79	0.84	48.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

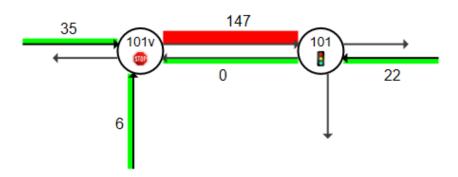
* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:41:41 p.m.
Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 / Tram Road interchange	Baseline: 95 th percentile queue	AM

Largest 95% Back of Queue Distance for any lane on the approach (metres)


■■ Network: N101 [Baseline Ramps AM (Network Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

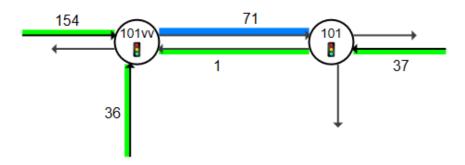
Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Location	Scenario	Peak
SH1 / Tram Road interchange	Future baseline: 95 th percentile queue	AM

Largest 95% Back of Queue Distance for any lane on the approach (metres)

■■ Network: N101 [Future Baseline AM (Network Folder: Future Baseline)]


Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

Network Cycle Time = 85 seconds (Network Optimum Cycle Time - Minimum Delay)

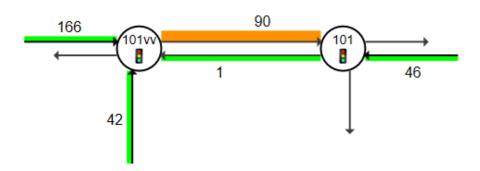
Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Location	Scenario	Peak
SH1 / Tram Road interchange	Future development: 95 th percentile queue	АМ

Largest 95% Back of Queue Distance for any lane on the approach (metres)

■■ Network: N101 [Future with PPC AM (Network Folder: Future with PPC)]


Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

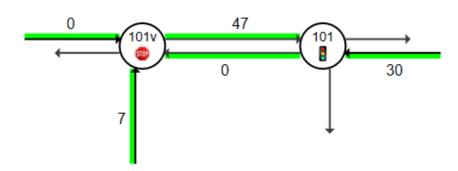
Network Cycle Time = 90 seconds (Network Optimum Cycle Time - Minimum Delay)

Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Location	Scenario	Peak
SH1 / Tram Road interchange	Baseline: 95 th percentile queue	PM

Largest 95% Back of Queue Distance for any lane on the approach (metres)


■■ Network: N101 [Baseline Ramps PM (Network Folder: Baseline Ramps)]

Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

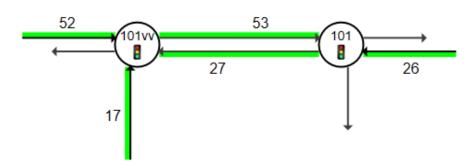
Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Location	Scenario	Peak
SH1 / Tram Road interchange	Future baseline: 95 th percentile queue	PM

Largest 95% Back of Queue Distance for any lane on the approach (metres)

■■ Network: N101 [Future Baseline PM (Network Folder: Future Baseline)]


Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

Network Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:39:44 p.m.

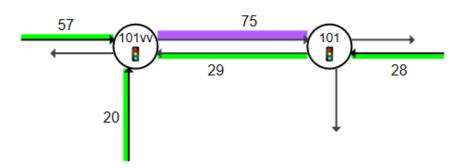
Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9

Location	Scenario	Peak
SH1 / Tram Road interchange	Future development: 95 th percentile queue	PM

QUEUE DISTANCE (PERCENTILE)

Largest 95% Back of Queue Distance for any lane on the approach (metres)

■■ Network: N101 [Future with PPC PM (Network Folder: Future with PPC)]


Output produced by SIDRA INTERSECTION Version: 9.1.2.202

New Network

Network Category: (None)

Network Cycle Time = 40 seconds (Network Optimum Cycle Time - Minimum Delay)

Colour code based on Queue Storage Ratio

[<0.6] [0.6-0.7] [0.7-0.8] [0.8-0.9] [0.9-1.0] [>1.0]

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Organisation: ABLEY TRANSPORTATION CONSULTANTS LIMITED | Licence: PLUS / 1PC | Processed: Tuesday, 23 January 2024 5:41:41 p.m.

Project: J:\Mike Greer Homes NZ (MGHNZ)\MGHNZ-J002 - Rezoning ITA and expert witness- 144 to 170 Main North Road Kaiapoi\Models\Tram Rd Ramps Sidra Modelling inc Free Queue.sip9